Doubly Fed Induction Generator for Wind Energy Conversion Systems with Integrated Active Filter Capabilities

ABSTRACT

This paper deals with the operation of doubly fed induction generator (DFIG) with an integrated active filter capabilities using grid-side converter (GSC). The main contribution of this work lies in the control of GSC for supplying harmonics in addition to its slip power transfer.

RSC

The rotor-side converter (RSC) is used for attaining maximum power extraction and to supply needed reactive power to DFIG. This wind energy conversion system (WECS) works as a static compensator (STATCOM) for produce harmonics even when the wind turbine is in shutdown condition. Control algorithms of both GSC and RSC are given in detail.

DFIG

The planned DFIG-based WECS is simulated using MATLAB/Simulink. A prototype of the planned DFIG based WECS is grown using a digital signal processor (DSP). Simulated results are validated with test results of the grown DFIG for different practical conditions, such as variable wind speed and unbalanced/single phase loads.

 KEYWORDS

  1. Doubly fed induction generator (DFIG)
  2. Integrated active filter
  3. Nonlinear load
  4. Power quality
  5. Wind energy conversion system (WECS).

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:

image001

Fig. 1. Proposed system configuration.

image002

Fig. 2. Control algorithm of the proposed WECS.

EXPECTED SIMULATION RESULTS

Simulated performance of the proposed DFIG-based WECS at fixed wind speed of 10.6 m/s (rotor speed of 1750 rpm).

Fig. 3. Simulated performance of the proposed DFIG-based WECS at fixed wind speed of 10.6 m/s (rotor speed of 1750 rpm).

Simulated waveform and harmonic spectra of (a) grid current (iga), (b) load current (ila), (c) stator current (isa), and (d) grid voltage for phase “a” (vga) at fixed wind speed of 10.6 m/s (rotor speed of 1750 rpm).

Fig. 4. Simulated waveform and harmonic spectra of (a) grid current (iga), (b) load current (ila), (c) stator current (isa), and (d) grid voltage for phase “a” (vga) at fixed wind speed of 10.6 m/s (rotor speed of 1750 rpm).

Simulated performance of the proposed DFIG-basedWECS working as a STATCOM at zero wind speed

Fig. 5. Simulated performance of the proposed DFIG-basedWECS working as a STATCOM at zero wind speed.

image006

Fig. 6. Simulated waveforms and harmonic spectra of (a) load current (ila) and (b) grid current (iga) working as a STATCOM at wind turbine shut down condition.

image007

Fig. 7. Simulated performance of proposed DFIG for fall in wind speed.

Dynamic performance of DFIG-based WECS for the sudden removal and application of local loads.

Fig. 8. Dynamic performance of DFIG-based WECS for the sudden removal and application of local loads.

CONCLUSION

The GSC control algorithm of the planned DFIG has been modified for supplying the harmonics and reactive power of the local loads. In this planned DFIG, the reactive power for the induction machine has been supplied from the RSC and the load reactive power has been provided from the GSC. The decoupled control of both active and reactive powers has been achieved by RSC control.

WECS

The planned DFIG has also been verified at wind turbine stalling condition for compensating harmonics and reactive power of local loads. This planned DFIG-based WECS with an joined active filter has been simulated using MATLAB/Simulink environment, and the simulated results are verified with test results of the grown prototype of this WECS.

GSC

Steady-state work of the planned DFIG has been display for a wind speed. Dynamic work of this planned GSC control algorithm has also been verified for the variation in the wind speeds and for local nonlinear load.

 REFERENCES

  1. M. Tagare, Electric Power Generation the Changing Dimensions. Piscataway, NJ, USA: IEEE Press, 2011.
  2. M. Joselin Herbert, S. Iniyan, and D. Amutha, “A review of technical issues on the development of wind farms,” Renew. Sustain. Energy Rev., vol. 32, pp. 619–641, 2014.
  3. Munteanu, A. I. Bratcu, N.-A. Cutululis, and E. Ceang, Optimal Control of Wind Energy Systems Towards a Global Approach. Berlin, Germany: Springer-Verlag, 2008.
  4. A. B. Mohd Zin, H. A. Mahmoud Pesaran, A. B. Khairuddin, L. Jahanshaloo, and O. Shariati, “An overview on doubly fed induction generators controls and contributions to wind based electricity generation,” Renew. Sustain. Energy Rev., vol. 27, pp. 692–708, Nov. 2013.
  5. S. Murthy, B. Singh, P. K. Goel, and S. K. Tiwari, “A comparative study of fixed speed and variable speed wind energy conversion systems feeding the grid,” in Proc. IEEE Conf. Power Electron. Drive Syst. (PEDS’07), Nov. 27–30, 2007, pp. 736–743.

Leave a Reply

Your email address will not be published.