A Hybrid PV-Wind-Diesel System for Optimal Performance in Microgrid

ABSTRACT:  

The PV-Hydro Diesel technology can be made attractive option because the features various merits like as low maintenance requirement, environmental friendliness and absence of fuel cost. The efficiency of energy conversion a PV generation system may low because sun power cell exhibits to the nonlinear voltage and current and power versus voltage characteristics. The recent advancements in the technology and the reduction of fossil fuel resources have further contributed to the cause. But still, there lies several challenges to it. The paper proposes a novel approach of hybridization of renewable sources using Maximum Peak Power Transfer technique and optimal control. The performance of our approach is quite better than its other counterparts in terms of transient state and the magnitude of voltage obtained.

KEYWORDS:

  1. MPPT
  2. PV- Hydro – Diesel
  3. Perturb and observe

SOFTWARE: MATLAB/SIMULINK

PROPOSED MODEL:

 

Fig. 1: Representing the overall proposed model

 EXPECTED SIMULATION RESULTS:

Fig. 2 Representing The FFT analysis of the voltage waveform at the load end. when the FFT analysis of the wave form is done the THD value is found to be 0.17 %.

Fig.3: The THD of the output

 CONCLUSION:

This paper proposed a novel approach of utilising a New Hybrid Technique approach to solve the MPPT problem in microgrid consisting of PV-Hydro Diesel cell connected to a grid using three phase inverter. The solar cell model was designed and given to boost converter. The converter output was analysed. An incremental conductance technique was also implemented for comparison purpose. The result of hybrid model was found to be quite better than the incremental conductance technique in terms of output voltage magnitude and THD content. The THD content reduces using our proposed approach. Also when the current is compared, the oscillations die out very fast in case of hybrid model while in I&C approach it is more or less sustained. In future this algorithm can be improved using other techniques and approaches. Also real time implementation of the algorithms can be done and hardware testing can be done. Hybrid with other algorithms can be utilised and the performances can be compared. Also clustering and other gradient learning methods can be utilised and the model can be tested for grid connection.

REFERENCES:

[1] Reddy, K. Pavankumar, and M. Venu Gopala Rao. “Modelling and Simulation of Hybrid Wind Solar Energy System using MPPT.” Indian Journal of Science and Technology 8, no. 23 (2015).

[2] Dalala, Zakariya M., Zaka Ullah Zahid, Wensong Yu, Younghoon Cho, and Jih-Sheng Lai. “Design and analysis of an MPPT technique for small-scale wind energy conversion systems.” Energy Conversion, IEEE Transactions on 28, no. 3 (2013): 756-767.

[3] Jain, S., Agarwal, V., 2004. A new algorithm for rapid tracking of approximate maximum power point in PV-Hydro systems. IEEE Trans. Power Electron. 2, 16–19.

[4] Bhandari, Binayak, Shiva Raj Poudel, Kyung-Tae Lee, and Sung-Hoon Ahn. “Mathematical modeling of hybrid renewable energy system: A review on small hydro-solar-wind power generation.” international journal of precision engineering and manufacturing-green technology 1, no. 2 (2014): 157-173.

[5] S. Yuvarajan and JulineShoeb, “A Fast and Accurate Maximum Power Point Tracker for PV Systems,” IEEE, 2008.