Permanent Magnet Synchronous Generator Based Wind Energy and DG Hybrid System

ABSTRACT:

This paper examines the utilization of changeless magnet synchronous generators (PMSGs) for a breeze vitality transformation framework (WECS) and a diesel motor driven generator (DG hybrid system) set of an independent cross breed framework with a battery vitality stockpiling framework (BESS). For voltage control at the purpose of normal coupling (PCC) and adjusted supply at terminals of DG hybrid system set, a solitary stage D-Q hypothesis based control calculation is connected for the exchanging of voltage source converter (VSC) of BESS and the greatest power point following (MPPT) is accomplished for WECS with a gradual conductance procedure for the exchanging of a dc-dc help converter. Recreation aftereffects of created model of proposed independent mixture framework, which is produced in MATLAB show execution of both the controllers and power quality enhancement of the half breed framework.

 

 SCHEMATIC DIAGRAM:

 

Fig. 1 Schematic diagram of Wind-Diesel hybrid configuration

 EXPECTED SIMULATION RESULTS:

Fig. 2 (a) Characteristics of the system with constant wind speed under varying loads.

Fig. 3 (b) Estimation of supply currents and voltages using control algorithm

Fig.4 (c) dynamic Performance of controller of hybrid system under varying linear loads at 10 m/s wind speed

Fig. 5(a) Characteristics of the system with constant wind speed under varying loads.

Fig. 6(b) Estimation of supply currents and voltages using control algorithm

Fig.7(c) dynamic Performance of controller of hybrid system under varying nonlinear loads at 10 m/s wind speed.

Fig. 8 waveforms and harmonic spectra (a) Phase ‘a’ supply voltage of at PCC (b) Phase ‘a’ supply current under nonlinear unbalanced loads.

Fig. 9 Controllers’ performance under wind speed reduction (11 m/s-8 m/s)

Fig. 10  Controllers’ performance under rise in wind speed (8 m/s-11 m/s)

 CONCLUSION:

A 3-φ independent breeze diesel half breed framework utilizing PMSG alongside BESS has been recreated in MATLAB utilizing Simpower framework tool compartments. Different parts have been intended for the cross breed framework and controller’s acceptable execution has been delineated utilizing 1-φ-D-Q hypothesis with SOGI channels for different loads under unique conditions while keeping up consistent voltage at PCC and adjusted source flows of diesel generator and furthermore for music concealment according to rules of IEEE-519-1992 standard. A mechanical sensor less methodology has been utilized for accomplishing MPPT through gradual conductance procedure.

 

Doubly Fed Induction Generator for Wind Energy Conversion Systems with Integrated Active Filter Capabilities

ABSTRACT

This paper deals with the operation of doubly fed induction generator (DFIG) with an integrated active filter capabilities using grid-side converter (GSC). The main contribution of this work lies in the control of GSC for supplying harmonics in addition to its slip power transfer. The rotor-side converter (RSC) is used for attaining maximum power extraction and to supply required reactive power to DFIG. This wind energy conversion system (WECS) works as a static compensator (STATCOM) for supplying harmonics even when the wind turbine is in shutdown condition. Control algorithms of both GSC and RSC are presented in detail. The proposed DFIG-based WECS is simulated using MATLAB/Simulink. A prototype of the proposed DFIGbased WECS is developed using a digital signal processor (DSP). Simulated results are validated with test results of the developed DFIG for different practical conditions, such as variable wind speed and unbalanced/single phase loads.

 KEYWORDS

  1. Doubly fed induction generator (DFIG)
  2. Integrated active filter
  3. Nonlinear load
  4. Power quality
  5. Wind energy conversion system (WECS).

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:

image001

Fig. 1. Proposed system configuration.

image002

Fig. 2. Control algorithm of the proposed WECS.

EXPECTED SIMULATION RESULTS

Simulated performance of the proposed DFIG-based WECS at fixed wind speed of 10.6 m/s (rotor speed of 1750 rpm).

Fig. 3. Simulated performance of the proposed DFIG-based WECS at fixed wind speed of 10.6 m/s (rotor speed of 1750 rpm).

Simulated waveform and harmonic spectra of (a) grid current (iga), (b) load current (ila), (c) stator current (isa), and (d) grid voltage for phase “a” (vga) at fixed wind speed of 10.6 m/s (rotor speed of 1750 rpm).

Fig. 4. Simulated waveform and harmonic spectra of (a) grid current (iga), (b) load current (ila), (c) stator current (isa), and (d) grid voltage for phase “a” (vga) at fixed wind speed of 10.6 m/s (rotor speed of 1750 rpm).

Simulated performance of the proposed DFIG-basedWECS working as a STATCOM at zero wind speed

Fig. 5. Simulated performance of the proposed DFIG-basedWECS working as a STATCOM at zero wind speed.

image006

Fig. 6. Simulated waveforms and harmonic spectra of (a) load current (ila) and (b) grid current (iga) working as a STATCOM at wind turbine shut down condition.

image007

Fig. 7. Simulated performance of proposed DFIG for fall in wind speed.

Dynamic performance of DFIG-based WECS for the sudden removal and application of local loads.

Fig. 8. Dynamic performance of DFIG-based WECS for the sudden removal and application of local loads.

CONCLUSION

The GSC control algorithm of the proposed DFIG has been modified for supplying the harmonics and reactive power of the local loads. In this proposed DFIG, the reactive power for the induction machine has been supplied from the RSC and the load reactive power has been supplied from the GSC. The decoupled control of both active and reactive powers has been achieved by RSC control. The proposed DFIG has also been verified at wind turbine stalling condition for compensating harmonics and reactive power of local loads. This proposed DFIG-based WECS with an integrated active filter has been simulated using MATLAB/Simulink environment, and the simulated results are verified with test results of the developed prototype of this WECS. Steady-state performance of the proposed DFIG has been demonstrated for a wind speed. Dynamic performance of this proposed GSC control algorithm has also been verified for the variation in the wind speeds and for local nonlinear load.

 REFERENCES

  1. M. Tagare, Electric Power Generation the Changing Dimensions. Piscataway, NJ, USA: IEEE Press, 2011.
  2. M. Joselin Herbert, S. Iniyan, and D. Amutha, “A review of technical issues on the development of wind farms,” Renew. Sustain. Energy Rev., vol. 32, pp. 619–641, 2014.
  3. Munteanu, A. I. Bratcu, N.-A. Cutululis, and E. Ceang, Optimal Control of Wind Energy Systems Towards a Global Approach. Berlin, Germany: Springer-Verlag, 2008.
  4. A. B. Mohd Zin, H. A. Mahmoud Pesaran, A. B. Khairuddin, L. Jahanshaloo, and O. Shariati, “An overview on doubly fed induction generators controls and contributions to wind based electricity generation,” Renew. Sustain. Energy Rev., vol. 27, pp. 692–708, Nov. 2013.
  5. S. Murthy, B. Singh, P. K. Goel, and S. K. Tiwari, “A comparative study of fixed speed and variable speed wind energy conversion systems feeding the grid,” in Proc. IEEE Conf. Power Electron. Drive Syst. (PEDS’07), Nov. 27–30, 2007, pp. 736–743.