Single Stage PV Array Fed Speed Sensorless Vector Control of Induction Motor Drive for Water Pumping

ABSTRACT:  

This paper deals with a single stage solar powered speed sensorless vector controlled induction motor drive for water pumping system, which is superior to conventional motor drive. The speed is estimated through estimated stator flux. The proposed system includes solar photovoltaic (PV) array, a three-phase voltage source inverter (VSI) and a motor-pump assembly.

An incremental conductance (InC) based MPPT (Maximum Power Point Tracking) algorithm is used to harness maximum power from a PV array. The smooth starting of the motor is attained by vector control of an induction motor. The desired configuration is designed and simulated in MATLAB/Simulink platform and the design, modeling and control of the system, are validated on an experimental prototype developed in the laboratory.

KEYWORDS:
  1. Speed Sensorless Control
  2. Stator Field-Oriented Vector Control
  3. Photovoltaic (PV)
  4. InC MPPT Algorithm
  5. Induction Motor Drive (IMD)
  6. Water Pump

 SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:

Fig. 1. PV fed induction motor drive configuration

 EXPECTED SIMULATION RESULTS:

Fig. 2. Starting and MPPT of PV array at 1000 W/m2

Fig. 3. Intermediate signals during starting at 1000 W/m2

(a)

(b)

Fig. 4. Simulation results during starting at 1000 W/m2 (a) Proposed drive (b) Waveforms showing sensed speed and estimated speed

Fig. 5. SPV array performance during decrease in insolation from 1000 W/m2 to 500 W/m2

(a)

 (b)

Fig. 6. Dynamic performance during irradiance decrement from 1000 W/m2 to 500 W/m2 (a) Proposed drive (b) Waveforms showing sensed speed and estimated speed

Fig. 7. PV array performance on increasing insolation from 500 W/m2 to 1000 W/m2

(a)

(b)

Fig. 8. Dynamic performance during irradiance decrement from 500 W/m2 to 1000 W/m2 (a) Proposed drive (b) Waveforms showing sensed speed and estimated speed

CONCLUSION:

 A single stage solar PV array fed speed sensorless vector-controlled induction motor drive has been operated subjected to different conditions and the steady state and dynamic behaviors have been found quite satisfactory and suitable for water pumping. The torque and stator flux, have been controlled independently. The motor is started smoothly. The reference speed is generated by DC link voltage controller controlling the voltage at DC link along with the speed estimated by the feed-forward term incorporating the pump affinity law. The power of PV array is maintained at maximum power point at the time of change in irradiance. This is achieved by using incremental-conductance based MPPT algorithm.

The speed PI controller has been used to control the q-axis current of the motor. Smooth operation of IMD is achieved with desired torque profile for wide range of speed control. Simulation results have displayed that the controller behavior is found satisfactory under steady state and dynamic conditions of insolation change. The suitability of the drive is also verified by experimental results under various conditions and has been found quite apt for water pumping.

REFERENCES:

[1] R. Foster, M. Ghassemi and M. Cota, Solar energy: Renewable energy and the environment, CRC Press, Taylor and francis Group, Inc. 2010.

[2] M. Kolhe, J. C. Joshi and D. P. Kothari, “Performance analysis of a directly coupled photovoltaic water-pumping system”, IEEE Trans. on Energy Convers., vol. 19, no. 3, pp. 613-618, Sept. 2004.

[3] J. V. M. Caracas, G. D. C. Farias, L. F. M. Teixeira and L. A. D. S. Ribeiro, “Implementation of a high-efficiency, high-lifetime, and low-cost converter for an autonomous photovoltaic water pumping system”, IEEE Trans. Ind. Appl., vol. 50, no. 1, pp. 631-641, Jan.-Feb. 2014.

[4] R. Kumar and B. Singh, “ Buck-boost converter fed BLDC motor for solar PV array based water pumping, ” IEEE Int. Conf. Power Electron. Drives and Energy Sys. (PEDES), 2014.

[5] Zhang Songbai, Zheng Xu, Youchun Li and Yixin Ni, “Optimization of MPPT step size in stand-alone solar pumping systems,” IEEE Power Eng. Society Gen. Meeting, June 2006.

Solar PV Array Fed Direct Torque Controlled Induction Motor Drive for Water Pumping

ABSTRACT:

 This paper deals with the solar photovoltaic (PV) array fed direct torque controlled (DTC) induction motor drive for water pumping system. To extract maximum power from the solar PV array, a DC-DC boost converter is employed. The soft starting of a three-phase induction motor is achieved by controlling the DC-DC boost converter through the incremental conductance maximum power point tracking (MPPT) technique.

The induction motor is well matched to drive a type water pump due to its load characteristics. It is well suited to the MPPT of the solar PV array. By using DTC technique, an induction motor exhibits homogeneous or even better response than the DC motor drive. The proposed system is designed and its performance is simulated in MATLAB/Simulink platform. Simulated results are demonstrated to validate the design and control of the proposed system.

KEYWORDS:
  1. Solar Photovoltaic (PV)
  2. Direct Torque Control (DTC)
  3. MPPT Control
  4. Induction Motor
  5. Water Pump

 SOFTWARE: MATLAB/SIMULINK

 CIRCUIT DIAGRAM:

Fig.l Schematic diagram of proposed system configuration

EXPECTED SIMULATION RESULTS:

 Fig.2 Steady state performance of proposed system

Fig.3 Starting performance of proposed system

Fig.4 Performance of the system at decrease in insolations

Fig.5 Performance of the system at increase in insolations

CONCLUSION:

It has been demonstrated that the solar PV array fed DTC controlled induction motor drive has been found quite suitable for water pumping. A new method for reference speed generation for DTC scheme has been proposed by controlling the voltage at DC bus and pump affinity law has been used to control the speed of an induction motor.

Solar PV array has been operated at maximum power during varying atmospheric conditions. This is achieved by using incremental conductance based MPPT algorithm. The speed PI controller has controlled the motor stator current and controlled the flow rate of pump. Simulation results have demonstrated that the performance of the controller has been found satisfactory under steady state as well as dynamic conditions.

REFERENCES:

[I] R. Foster, M. Ghassemi and M. Cota, Solar energy: Renewable energy and the environment, CRC Press, Taylor and francis Group, Inc. 20 I O.

[2] S. Jain, Thopukara, AK. Karampur and V.T. Somasekhar, “A SingleStage Photovoltaic System for a Dual-Inverter-Fed Open-End Winding Induction Motor Drive for Pumping Applications,” iEEE Trans. On Power Electro.. vo1.30, no.9, pp.4809-4818, Sept. 2015.

[3] M. A Razzak, A S. K. Chowdhury and K. M. A Salam, “Induction motor drive system using Push-Pull converter and three-phase SPWM inverter fed from solar photovoltaic panel,” international Conference on 2014 Power and Energy Systems: Towards Sustainable Energy, 13- 15 March 2014.

[4] J.V. Caracas Mapurunga, G. Farias Carvalho De, L. F. Moreira Teixeira, L.A Ribeiro De Souza, “Implementation of a HighEfficiency, High-Lifetime, and Low-Cost Converter for an Autonomous Photovoltaic Water Pumping System,” iEEE Trans. On ind. Appl., vo1.50, no.!, pp.631-641, Jan.-Feb. 2014.

Single Stage Solar PV Fed Brushless DC Motor Driven Water Pump

 

ABSTRACT:

In order to optimize the solar photovoltaic (PV) generated power using a maximum power point tracking (MPPT) technique, a DC-DC conversion stage is usually required in solar PV fed water pumping which is driven by a brushless DC (BLDC) motor. This power conversion stage leads to an increased cost, size, complexity and reduced efficiency. As a unique solution, this work addresses a single stage solar PV energy conversion system feeding a BLDC motor-pump, which eliminates the DC-DC conversion stage. A simple control technique capable of operating the solar PV array at its peak power using a common voltage source inverter (VSI), is proposed for BLDC motor control. The proposed control eliminates the BLDC motor phase current sensors. No supplementary control is associated for the speed control of motor-pump and its soft start. The speed is controlled through the optimum power of solar PV array. The suitability of proposed system is manifested through its performance evaluation using MATLAB/Simulink based simulated results and experimental validation on a developed prototype, under the practical operating conditions.

KEYWORDS:

  1. MPPT
  2. Solar PV array
  3. BLDC motor
  4. Water pump
  5. VSI
  6. Soft starting
  7. Speed control

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:

 

Fig.1 Proposed water pumping based on a single stage solar PV energy conversion system.

EXPECTED SIMULATION RESULTS:

 Fig.2 Steady state and starting performance of (a) PV array and (b) motor pump, of proposed system at 1 kW/m2.

Fig.3 Steady state and starting response of (a) PV array and (b) motor-pump, of proposed system at 200 W/m2.

Fig.4 Dynamic performance of (a) PV array and (b) BLDC motor Pump ,of Proposed  water pumping system.

Fig. 5 Responses of (a) PV array and (b) BLDC motor, under partial shading

CONCLUSION:

The proposed BLDC motor driven water pumping based on a single stage solar PV generation has been validated through a demonstration of its various steady state, starting and dynamic performances. The system has been simulated using the MATLAB toolboxes, and implemented on an experimental prototype. The topology of the proposed system has provided a DC-DC converter-less solution for PV fed brushless DC motor driven water pumping. Moreover, the motor phase current sensing elements have been eliminated, resulting in a simple and cost-effective drive. The other desired functions are the speed control without any additional circuit and a soft start of the motor-pump. A detailed comparative analysis of the proposed and the existing topologies has ultimately manifested the superiority of the proposed work.

REFERENCES:

[1] C. Jain and B. Singh, “An Adjustable DC Link Voltage Based Control of Multifunctional Grid Interfaced Solar PV System,” IEEE J. Emerg. Sel. Topics Power Electron., Early Access.

[2] A. A. A. Radwan and Y. A. R. I. Mohamed, “Power Synchronization Control for Grid-Connected Current-Source Inverter-Based Photovoltaic Systems,” IEEE Trans. Energy Convers., vol. 31, no. 3, pp. 1023-1036, Sept. 2016.

[3] P. Vithayasrichareon, G. Mills and I. F. MacGill, “Impact of Electric Vehicles and Solar PV on Future Generation Portfolio Investment,” IEEE Trans. Sustain. Energy, vol. 6, no. 3, pp. 899-908, July 2015.

[4] A. K. Mishra and B. Singh, “A single stage solar PV array based water pumping system using SRM drive,” IEEE Ind. Appl. Soc. Annu. Meeting, Portland, OR, 2016, pp. 1-8.

[5] S. Jain, A.K. Thopukara, R. Karampuri and V.T. Somasekhar, “A Single-Stage Photovoltaic System for a Dual-Inverter-Fed Open-End Winding Induction Motor Drive for Pumping Applications,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 4809 – 4818, Sept. 2015.

BLDC Motor Driven Solar PV Array Fed Water Pumping System Employing Zeta Converter

ABSTRACT:

This paper proposes a simple, cost effective and efficient brushless DC (BLDC) motor drive for solar photovoltaic (SPV) array fed water pumping system. A zeta converter is utilized in order to extract the maximum available power from the SPV array. The proposed control algorithm eliminates phase current sensors and adapts a fundamental frequency switching of the voltage source inverter (VSI), thus avoiding the power losses due to high frequency switching. No additional control or circuitry is used for speed control of the BLDC motor. The speed is controlled through a variable DC link voltage of VSI. An appropriate control of zeta converter through the incremental conductance maximum power point tracking (INC-MPPT) algorithm offers soft starting of the BLDC motor. The proposed water pumping system is designed and modeled such that the performance is not affected under dynamic conditions. The suitability of proposed system at practical operating conditions is demonstrated through simulation results using MATLAB/ Simulink followed by an experimental validation.

KEYWORDS:

  1. BLDC motor
  2. SPV array
  3. Water pump
  4. Zeta converter
  5. VSI
  6. INC-MPPT

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:

 

Fig.1 Configuration of proposed SPV array-Zeta converter fed BLDC motor drive for water pumping system.

EXPECTED SIMULATION RESULTS:

 

Fig.2 Performances of the proposed SPV array based Zeta converter fed BLDC motor drive for water pumping system (a) SPV array variables, (b) Zeta converter variables, and (c) BLDC motor-pump variables.

CONCLUSION:

The SPV array-zeta converter fed VSI-BLDC motor-pump for water pumping has been proposed and its suitability has been demonstrated by simulated results using MATLAB/Simulink and its sim-power-system toolbox. First, the proposed system has been designed logically to fulfil the various desired objectives and then modelled and simulated to examine the various performances under starting, dynamic and steady state conditions. The performance evaluation has justified the combination of zeta converter and BLDC motor drive for SPV array based water pumping. The system under study availed the various desired functions such as MPP extraction of the SPV array, soft starting of the BLDC motor, fundamental frequency switching of the VSI resulting in a reduced switching losses, reduced stress on IGBT switch and the components of zeta converter by operating it in continuous conduction mode and stable operation. Moreover, the proposed system has operated successfully even under the minimum solar irradiance.

REFERENCES:

[1] M. Uno and A. Kukita, “Single-Switch Voltage Equalizer Using Multi- Stacked Buck-Boost Converters for Partially-Shaded Photovoltaic Modules,” IEEE Transactions on Power Electronics, no. 99, 2014.

[2] R. Arulmurugan and N. Suthanthiravanitha, “Model and Design of A Fuzzy-Based Hopfield NN Tracking Controller for Standalone PV Applications,” Electr. Power Syst. Res. (2014). Available: http://dx.doi.org/10.1016/j.epsr.2014.05.007

[3] S. Satapathy, K.M. Dash and B.C. Babu, “Variable Step Size MPPT Algorithm for Photo Voltaic Array Using Zeta Converter – A Comparative Analysis,” Students Conference on Engineering and Systems (SCES), pp.1-6, 12-14 April 2013.

[4] A. Trejos, C.A. Ramos-Paja and S. Serna, “Compensation of DC-Link Voltage Oscillations in Grid-Connected PV Systems Based on High Order DC/DC Converters,” IEEE International Symposium on Alternative Energies and Energy Quality (SIFAE), pp.1-6, 25-26 Oct. 2012.

[5] G. K. Dubey, Fundamentals of Electrical Drives, 2nd ed. New Delhi, India: Narosa Publishing House Pvt. Ltd., 2009.