Modeling and Simulation of a Distribution STATCOM (D-STATCOM) for Power Quality Problems-Voltage Sag and Swell Based on Sinusoidal Pulse Width Modulation (SPWM)

ABSTRACT:

This paper presents the systematic procedure of the modeling and simulation of a Distribution STATCOM (DSTATCOM) for power quality problems, voltage sag and swell based on Sinusoidal Pulse Width Modulation (SPWM) technique. Power quality is an occurrence manifested as a nonstandard voltage, current or frequency that results in a failure of end use equipments. The major problems dealt here is the voltage sag and swell. To solve this problem, custom power devices are used. One of those devices is the Distribution STATCOM (D-STATCOM), which is the most efficient and effective modern custom power device used in power distribution networks. D-STATCOM injects a current in to the system to correct the voltage sag and swell.The control of the Voltage Source Converter (VSC) is done with the help of SPWM. The proposed D-STATCOM is modeled and simulated using MATLAB/SIMULINK software.

KEYWORDS:

  1. Distribution STATCOM (D-STATCOM)
  2. MATLAB/SIMULINK
  3. Power quality problems
  4. Sinusoidal Pulse  Width Modulation (SPWM)
  5. Voltage sag and swell
  6. Voltage  Source Converter (VSC)

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:

Fig. 1. Schematic representation of the D-STATECOM for a typical custom

power application.

EXPECTED SIMULATION RESULTS:

 Fig. 2. Voltage Vrms at load point, with three-phase fault: (a) Without DSTATCOM and (b) With D-STATCOM, 750I-lf .

Fig. 3. Voltage vrms at load point, with three phase-ground fault: (a)

Without D-STATCOM and (b) With D-STATCOM.

Fig. 4. Voltage Vrms at load point, with line-ground fault: (a) Without DSTATCOM and (b) With D-STATCOM.

Fig. 5. Voltage vrms at load point, with line-line fault: (a) Without DSTATCOM and (b) With D-STATCOM.

Fig. 6. Voltage vrms at load point, with line-line-ground fault: (a) Without

D-STATCOM and (b) With D-STATCOM.

CONCLUSION:

This paper has presented the power quality problems such as voltage sags and swell. Compensation techniques of custom power electronic device D-ST ATCOM was presented. The   design and applications of D-STATCOM for voltage sags, swells and comprehensive results were presented. The Voltage Source Convert (VSC) was implemented with the help of Sinusoidal Pulse Width Modulation (SPWM). The control scheme was tested under a wide range of operating conditions, and it was observed to be very robust in every case. For modeling and simulation of a D-ST ATCOM by using the highly developed graphic facilities available in MA TLAB/SIMULINK were used. The simulations carried out here showed that the D-STATCOM provides relatively better voltage regulation capabilities.

 REFERENCES:

[I] O. Anaya-Lara, E. Acha, “Modeling and analysis of custom power  systems by PSCAD/EMTDC,” IEEE Trans. Power Delivery, vol. 17, no .I, pp. 266-272, January 2002.

[2] S. Ravi Kumar, S. Sivanagaraju, “Simualgion of D-Statcom and DVR in  power system,” ARPN jornal of engineering and applied science, vol. 2,   no. 3, pp. 7-13, June 2007.

[3] H. Hingorani, “Introducing custom power”, IEEE Spectrum, vol. 32, no.6, pp. 41-48, June 1995.

[4] N. Hingorani, “FACTS-Flexible ac transmission systems,” in Proc. IEE 5th Int Conf AC DC Transmission, London, U.K., 1991, Conf Pub.  345, pp. 1-7.

[5] Mahesh Singh, Vaibhav Tiwari, “Modeling analysis and soltion to  power quality problems,” unpublished.

An Enhanced Voltage Sag Compensation Scheme for Dynamic Voltage Restorer

IEEE Transactions on Industrial Electronics, 2013

ABSTRACT

This paper deals with improving the voltage quality of sensitive loads from voltage sags using dynamic voltage restorer (DVR). The higher active power requirement associated with voltage phase jump compensation has caused a substantial rise in size and cost of dc link energy storage system of DVR. The existing control strategies either mitigate the phase jump or improve the utilization of dc link energy by (i) reducing the amplitude of injected voltage, or (ii) optimizing the dc bus energy support. In this paper, an enhanced sag compensation strategy is proposed that mitigates the phase jump in the load voltage while improving the overall sag compensation time. An analytical study shows that the proposed method significantly increases the DVR sag support time (more than 50%) compared with the existing phase jump compensation methods. This enhancement can also be seen as a considerable reduction in dc link capacitor size for new installation. The performance of proposed method is evaluated using simulation study.

 

KEYWORDS:

  1. Dynamic voltage restorer (DVR)
  2. Voltage source inverter (VSI)
  3. Voltage sag compensation
  4. Voltage phase jump compensation.

 

SOFTWARE: MATLAB/SIMULINK

  

BLOCK DIAGRAM:

Fig. 1. Basic DVR based system configuration

 

EXPECTED SIMULATION RESULTS:

Fig. 2. Simulation results for the proposed sag compensation method for 50% sag depth. (a) PCC voltage, (b) load voltage, (c) DVR voltage, (d) DVR active and reactive power, and (e) dc link voltage.

Fig. 3. Simulation results for the proposed sag compensation method for 23% sag depth. (a) PCC voltage, (b) load voltage, (c) DVR voltage, (d) DVR active and reactive power, and (e) dc link voltage.

 

CONCLUSION

In this paper an enhanced sag compensation scheme is proposed for capacitor supported DVR. The proposed strategy improves the voltage quality of sensitive loads by protecting them against the grid voltage sags involving the phase jump. It also increases compensation time by operating in minimum active power mode through a controlled transition once the phase jump is compensated. To illustrate the effectiveness of the proposed method an analytical comparison is carried out with the existing phase jump compensation schemes. It is shown that compensation time can be extended from 10 to 25 cycles (considering pre sag injection as the reference method) for the designed limit of 50% sag depth with 450 phase jump. Further extension in compensation time can be achieved for intermediate sag depths. This extended compensation time can be seen as considerable reduction in dc link capacitor size (for the studied case more than 50%) for the new installation. The effectiveness of the proposed method is evaluated through extensive simulations in MATLAB/Simulink and validated on a scaled lab prototype experimentally. The experimental results demonstrate the feasibility of the proposed phase jump compensation method for practical applications.

 

REFERENCES

  • A. Martinez and J.M. Arnedo, “Voltage sag studies in distribution networks- part I: System modeling,” IEEE Trans. Power Del., vol. 21,no. 3, pp. 338–345, Jul. 2006.
  • G. Nielsen, F. Blaabjerg and N. Mohan, “Control strategies for dynamic voltage restorer, compensating voltage sags with phase jump,” in Proc. IEEE APEC, 2001, pp. 1267–1273.
  • D. Li, S.S. Choi, and D.M. Vilathgamuwa, “Impact of voltage phase jump on loads and its mitigation,” in Proc. 4th Int. Power Electron. Motion Control Conf., Xian, China, Aug. 14–16, 2004, vol. 3, pp. 1762– 176.
  • Sullivan, T. Vardell, and M. Johnson, “Power interruption costs to industrial and commercial consumers of electricity, IEEE Trans. Ind App., vol. 33, no. 6, pp. 1448–1458, Nov. 1997.
  • Kaniewski, Z. Fedyczak and G. Benysek “AC Voltage Sag/Swell Compensator Based on Three-Phase Hybrid Transformer With Buck- Boost Matrix-Reactance Chopper”, IEEE Trans. Ind. Electron., vol.61, issue. 8, Aug 2014.

 

Mitigation of Voltage Sag For Power Quality Improvement Using DPFC System

ABSTRACT

A new control scheme to improve and maintain the power quality of an electrical power system by design of distributed power flow controller. Generally, In case of modern power utilities have problems like challenges in growth of electricity in case of non-linear loads in grid connected systems. In this paper, we introduced a new FACTS method i.e. distributed power flow controller which is similar to other series-shunt controller types. This DPFC method is also used like UPFC to mitigate voltage sag and swell as a power quality issue. In DPFC, we eliminate the common dc link capacitor and instead of single three phase series converter it has three individual single phase converters. In this paper the control circuit is designed by using series referral voltages, branch currents. The evaluated values are obtained by using MATLAB/SIMULINK.

KEYWORDS

  1. DPFC
  2. Voltage Sag and Swell
  3. Power Quality

 SOFTWARE: MATLAB/SIMULINK

 BLOCK DIAGRAM:

Fig 1: Basic Configuration of DPFC

EXPECTED SIMULATION RESULTS

Fig 2: Simulation results for voltage sag condition

Fig 3: Simulation results for mitigation of Voltage sag with DPFC system

 

Fig 4: Simulation results for current swell condition

Fig 5: Simulation results for mitigation of current swell with DPFC system

Fig 6: simulation results for active and reactive powers

CONCLUSION

In this paper we implemented a new concept for controlling power quality problems by Distributed Power Flow Controller device. The proposed concept of the DPFC approach is mathematically formulated and analyzed for voltage dips and their mitigations for a three phase source with linear load. The experimental results of DPFC shows the effectiveness of DPFC in power quality enhancement as compared to all other FACTS devices.

REFERENCES

[1] J. Faiz, G. H. Shahgholian, and M. Torabian, “Design and simulation of UPFC for enhancement of power quality in transmission lines,” IEEE International Conference on Power System Technology, vol. 24, no. 4, 2010.

[2] A. E. Emanuel and J. A. McNeill, “Electric power quality,” Annu. Rev. Energy Environ, 1997.

[3] I. N. R. Patne and K. L. Thakre “Factor affecting characteristics of voltage sag due to fault in the power system,” Serbian Journal of Electrical engineering. vol. 5, no.1, 2008.

[4] B. Singh, K. Al-Haddad, and A. Chandra, “A review of active filters for power quality improvement,” IEEE Trans. Ind. Electron. vol. 46, no. 5, pp. 960–971, 1999.

[5] M. A. Hannan and A. Mohamed, member IEEE, “PSCAD/EMTDC simulation of unified series-shunt compensator for power quality improvement,” IEEE Transactions on Power Delivery, vol. 20, no. 2, 2005.