**ABSTRACT:**

Induction motors are workhorse of industries due to its power/mass relation, efficiency, low cost and nearly maintenance free operation in its life cycle. However motors with low efficiency waste a lot of energy that will increase its operational cost. As a result of high energy consumption and the huge number of operating units, even a small increase in efficiency improvement has significant effect on the entire energy consumptions and operational cost. This paper uses key features of loss model control (LMC) and search control (SC) together for estimation and reproduction of optimal flux component of current (Ids), for optimal efficiency operation of induction motor. At first, a d-q loss model of induction motor is used to derive a loss-minimization expression considering core saturation. The loss expression is used to derive optimal Ids expression and then Ids is estimated for various load profiles and finally tabulated. Based on those tabulated values, a look-up table in MATLAB is designed, and thus optimal Ids* value can be reproduced, depending upon run-time load profile, in feed-forward manner, and thus eliminates run-time loss model complex computation. Efficiency is compared for conventional vector control (constant Ids) and proposed optimal control (optimal Ids) operations. Superior efficiency performance (1-18%) is observed in optimal flux operation at steady-state, for load torque above 60% in simulation, for wide range of speed. The proposed hybrid concept is easy to implement, run-time computation free operation, ripple free operation, and offers higher power saving ratio with respect to useful output power.

**KEYWORDS:**

- Induction motor drive
- Efficiency optimization
- Vector control
- Optimal control
- Look-up table

** ****SOFTWARE:** MATLAB/SIMULINK

** ****BLOCK DIAGRAM:**

Fig. 1(a). MATLAB model for efficiency validation

**EXPECTED SIMULATION RESULTS:**

Fig. 2. Speed, Torque and Efficiency perfonnance at (a) at rated load torque (200N-m) at 120 radis speed, 12% efficiency rise, (b) at *3/4th *rated load torque (150Nm) at 120 radis speed, 5% efficiency rise

Fig.3 Ids* values at different speeds

Fig. 4(a) Efliciency- vs- Load-Torque at 120 radis, (b) Efliciency- vs- Speed

Fig. 5(a) Input Power- vs- Speed, (b) %age power saving- vs- speed

**CONCLUSION:**

In this work, it is verified that the optimal flux operation is superior to that of vector control method under steady – state condition, in terms of efficiency enhancement and hence energy-saving. In general I – 18% improvement is observed on 50 HP, 60 Hz motor, at different load-torques (above 60%) and speeds, in simulink environment. Efficiency improvement margin is seen degraded below 60% of rated load, and conventional vector control performs better. This can be seen as shortcoming of proposed method. The dynamic performance is seen satisfactory (similar to vector control), but speed and torque tracking accuracy is degraded a bit, but still the proposed approach is extremely suitable for such an application where maintaining speed and torque very precisely is not a critical issue, such as an induction motor drive used in an industrial HV AC applications. A lot of electricity can be saved with this minute compromise in speed and torque, since it offers higher amount of energy savings as compared to existing methods, hence a great contribution towards social and environmental aspects. The proposed method can be easily implemented on other induction motor drive systems also, for which the steady-state speed-vs.-torque load characteristics are already known or can be predicted. Also, the proposed hybrid approach eliminates the need of runtime computation complexity in traditional loss model controller (LMC), so less hardware installations required in implementation, hence cost-effective. Also, since no runtime perturbations happening as it usually happen in conventional search control (SC), so no torque ripples, hence less wear and tear of induction motor drive.

**REFERENCES:**

[1] A. H. M. Yatim and W. M. Utomo, “To develop an efficient variable speed compressor motor system,” universiti teknologi Malaysia (UTM), Skudai, Malasia, 2007.

[2] R. Hanitsch, “Energy efficienct electric motors,” university of technology berlin, germany, 2000.

[3] Y. Yakhelet: “Energy efficiency optimization of induction motors,” Boumerdes University, Boumerdes, Algeria, 2007.

[4] M. W. Turner, V. E. McCormick and 1. G. Cleland, Efficiency optimization control of AC induction motors: Initial laboratory results, United States Environmental Protection Agency, Research and Development, National Risk Management Research Laboratory, 1996.

[5] T. Fletier, W. Eichhammer and 1. Schleich, “Energy efficiency in electric motor systems: Technical potentials and policy approacehs fir developing countries,” United Nations Industrila Development, Vienna,2011.