Power Quality Improvement Using UPQC Integrated with Distributed Generation Network

International Journal of Electrical and Computer Engineering Vol:8, No:7, 2014

 ABSTRACT  The increasing demand of electric power is giving an emphasis on the need for the maximum utilization of renewable energy sources. On the other hand maintaining power quality to satisfaction of utility is an essential requirement. In this paper the design aspects of a Unified Power Quality Conditioner integrated with photovoltaic system in a distributed generation is presented. The proposed system consist of series inverter, shunt inverter are connected back to back on the dc side and share a common dc-link capacitor with Distributed Generation through a boost converter. The primary task of UPQC is to minimize grid voltage and load current disturbances along with reactive and harmonic power compensation. In addition to primary tasks of UPQC, other functionalities such as compensation of voltage interruption and active power transfer to the load and grid in both islanding and interconnected mode have been addressed. The simulation model is design in MATLAB/ Simulation environment and the results are in good agreement with the published work.

 

KEYWORDS:

  1. Distributed Generation(DG)
  2. Interconnected mode
  3. Islanding mode
  4. Maximum power point tracking (MPPT)
  5. Power Quality (PQ)
  6. Unified power quality conditioner (UPQC)
  7. Photovoltaic array (PV).

 

SOFTWARE: MATLAB/SIMULINK

 

BLOCK DIAGRAM:

 UPQC with DG connected to the DC link

Fig. 1. UPQC with DG connected to the DC link

 

EXPECTED SIMULATION RESULTS:

Fig. 2  Bus voltage, series compensating voltage, and load voltage

 

Fig. 3 Simulation result for upstream fault on feeder: Bus voltage, compensating voltage, load voltage

 

Fig. 4 Simulation results for load change: nonlinear load current,Feeder current, load voltage, and dc-link capacitor voltage

 

CONCLUSION

The new configuration is named unified power-quality conditioner with Photo Voltaic System (UPQC-PV). Compared to a conventional UPQC, the proposed topology is capable of fully protecting critical and sensitive loads against distortions, sags/swell, and interruption in both islanding and interconnected modes. The performance of the UPQC-PV is evaluated under various disturbance conditions and it offers the following advantages:

1) To regulate the load voltage against sag/swell and disturbances in the system to protect the nonlinear/sensitive load.

2) To compensate for the reactive and harmonic components of nonlinear load current.

3) To compensate voltage interruption and active power transfer to the load and grid in islanding mode to protect sensitive critical load.

4) Depending upon the ratings, the combined system can reduce the cost up to one fifth of the separate system. Capacity enhancement has been achieved using multi-level or multi-module and central control mode, however, the flexibility of UPQC to increase its capacity in future and to cope up with the increase load demand in medium voltage distribution system.

 

REFERENCES

  1. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, E. Galván, R. C.P. Guisado, M. Á. M. Prats, J. I. León, and N. M. Alfonso, “Power electronic systems for the grid integration of renewable energy sources: A survey,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1002–1016, Aug. 2006.
  2. H. R. Enslin and P. J. M. Heskes, “Harmonic interaction betweena large number of distributed power inverters and the distribution network,” IEEE Trans. Power Electron., vol. 19, no. 6, pp. 1586–1593,
  3. D. Sabin and A. Sundaram, “Quality enhances reliability,” IEEE Spectr., vol. 33, no. 2, pp. 34–41, Feb. 1996.
  4. Rastogi, R. Naik, and N. Mohan, “A comparative evaluation of harmonic reduction techniques in three-phase utility interface of power electronic loads,” IEEE Trans. Ind. Appl., vol. 30, no. 5, pp. 1149–1155, Sep./Oct. 1994.
  5. Ghosh and G. Ledwich, “A unified power quality conditioner (UPQC) for simultaneous voltage and current compensation,” Elect Power Syst. Res., pp. 55–63, 2001.

Design and Performance Analysis of Three-Phase Solar PV Integrated UPQC

IEEE Transactions on Industry Applications, 2017 IEEE

ABSTRACT: This paper deals with the design and performance analysis of a three-phase single stage solar photovoltaic integrated unified power quality conditioner (PV-UPQC). The PV-UPQC consists of a shunt and series connected voltage compensators connected back to back with common DC-link.The shunt compensator performs the dual function of extracting power from PV array apart from compensating for load current harmonics. An improved synchronous reference frame control based on moving average filter is used for extraction of load active current component for improved performance of the PVUPQC. The series compensator compensates for the grid side power quality problems such as grid voltage sags/swells. The compensator injects voltage in-phase/out of phase with point of common coupling (PCC) voltage during sag and swell conditions respectively. The proposed system combines both the benefits of clean energy generation along with improving power quality. The steady state and dynamic performance of the system are evaluated by simulating in Matlab-Simulink under a nonlinear load. The system performance is then verified using a scaled down laboratory prototype under a number of disturbances such as load unbalancing, PCC voltage sags/swells and irradiation variation.

KEYWORDS:

  1. Power Quality
  2. Shunt compensator
  3. Series compensator
  4. UPQC
  5. Solar PV
  6. MPPT

SOFTWARE: MATLAB/SIMULINK

CIRCUIT DIAGRAM:

Fig. 1. System Configuration PV-UPQC

EXPECTED SIMULATION RESULTS:

 

Fig. 2. Performance of PV-UPQC under Voltage Sag and Swell Conditions

Fig. 3. Performance PV-UPQC during Load Unbalance Condition

Fig. 4. Performance PV-UPQC at Varying Irradiation Condition

Fig. 5. Load Current Harmonic Spectrum and THD

Fig. 6. Grid Current Harmonic Spectrum and THD

CONCLUSION:

The design and dynamic performance of three-phase PVUPQC have been analyzed under conditions of variable irradiation and grid voltage sags/swells. The performance of the system has been validated through experimentation on scaled down laboratory prototype. It is observed that PVUPQC mitigates the harmonics caused by nonlinear load and maintains the THD of grid current under limits of IEEE-519 standard. The system is found to be stable under variation of irradiation, voltage sags/swell and load unbalance. The performance of d-q control particularly in load unbalanced condition has been improved through the use of moving average filter. It can be seen that PV-UPQC is a good solution for modern distribution system by integrating distributed generation with power quality improvement.

REFERENCES:

[1] B. Mountain and P. Szuster, “Solar, solar everywhere: Opportunities and challenges for australia’s rooftop pv systems,” IEEE Power and Energy Magazine, vol. 13, no. 4, pp. 53–60, July 2015.

[2] A. R. Malekpour, A. Pahwa, A. Malekpour, and B. Natarajan, “Hierarchical architecture for integration of rooftop pv in smart distribution systems,” IEEE Transactions on Smart Grid, vol. PP, no. 99, pp. 1–1, 2017.

[3] Y. Yang, P. Enjeti, F. Blaabjerg, and H. Wang, “Wide-scale adoption of photovoltaic energy: Grid code modifications are explored in the distribution grid,” IEEE Ind. Appl. Mag., vol. 21, no. 5, pp. 21–31, Sept 2015.

[4] M. J. E. Alam, K. M. Muttaqi, and D. Sutanto, “An approach for online assessment of rooftop solar pv impacts on low-voltage distribution networks,” IEEE Transactions on Sustainable Energy, vol. 5, no. 2, pp.663–672, April 2014.

[5] J. Jayachandran and R. M. Sachithanandam, “Neural network-based control algorithm for DSTATCOM under nonideal source voltage and varying load conditions,” Canadian Journal of Electrical and Computer Engineering, vol. 38, no. 4, pp. 307–317, Fall 2015.

Design and Performance Analysis of Three-Phase Solar PV Integrated UPQC

2016 IEEE

ABSTRACT: In this paper, the design and performance of a threephase solar PV (photovoltaic) integrated UPQC (PV-UPQC) are presented. The proposed system combines both the benefits of distributed generation and active power filtering. The shunt compensator of the PV-UPQC compensates for the load current harmonics and reactive power. The shunt compensator is also extracting maximum power from solar PV array by operating it at its maximum power point (MPP). The series compensator compensates for the grid side power quality problems such as grid voltage sags/swells by injecting appropriate voltage in phase with the grid voltage. The dynamic performance of the proposed system is simulated in Matlab-Simulink under a nonlinear load consisting of a bridge rectifier with voltage-fed load.

KEYWORDS:

  1. Power Quality
  2. DSTATCOM
  3. DVR
  4. UPQC
  5. Solar PV
  6. MPPT

SOFTWARE: MATLAB/SIMULINK

 CIRCUIT DIAGRAM:

Fig. 1. System Configuration PV-UPQC

EXPECTED SIMULATION RESULTS:

 Fig. 2. Performance PV-UPQC at steady state condition

Fig. 3. PCC Voltage Harmonic Spectrum and THD

Fig. 4. Load Voltage Harmonic Spectrum and THD

Fig. 5. Load Current Harmonic Spectrum and THD

Fig. 6. Grid Current Harmonic Spectrum and THD

Fig. 7. Performance PV-UPQC at varying irradiation condition

Fig. 8. Performance of PV-UPQC under voltage sag and swell conditions

CONCLUSION:

The dynamic performance of three-phase PV-UPQC has been analyzed under conditions of variable irradiation and grid voltage sags/swells. It is observed that PV-UPQC mitigates the harmonics caused by nonlinear and maintains the THD of grid voltage, load voltage and grid current under limits of IEEE-519 standard. The system is found to be stable under variation of irradiation from 1000𝑊/𝑚2 to 600𝑊/𝑚2. It can be seen that PV-UPQC is a good solution for modern distribution system by integrating distributed generation with power quality improvement.

REFERENCES:

[1] Y. Yang, P. Enjeti, F. Blaabjerg, and H. Wang, “Wide-scale adoption of photovoltaic energy: Grid code modifications are explored in the distribution grid,” IEEE Ind. Appl. Mag., vol. 21, no. 5, pp. 21–31, Sept 2015.

[2] B. Singh, A. Chandra and K. A. Haddad, Power Quality: Problems and Mitigation Techniques. London: Wiley, 2015.

[3] M. Bollen and I. Guo, Signal Processing of Power Quality Disturbances. Hoboken: Johm Wiley, 2006.

[4] P. Jayaprakash, B. Singh, D. Kothari, A. Chandra, and K. Al-Haddad, “Control of reduced-rating dynamic voltage restorer with a battery energy storage system,” IEEE Trans. Ind. Appl., vol. 50, no. 2, pp. 1295– 1303, March 2014.

[5] M. Badoni, A. Singh, and B. Singh, “Variable forgetting factor recursive least square control algorithm for DSTATCOM,” IEEE Trans. Power Del., vol. 30, no. 5, pp. 2353–2361, Oct 2015.

Versatile Unified Power Quality Conditioner Applied to Three-Phase Four-Wire Distribution Systems Using a Dual Control Strategy

IEEE Transactions on Power Electronics, 2015

ABSTRACT: This paper presents the study, analysis and practical implementation of a versatile unified power quality conditioner (UPQC), which can be connected in both three-phase three-wire or three-phase four-wire distribution systems for performing the series-parallel power-line conditioning. Thus, even when only a three-phase three-wire power system is available at a plant site, the UPQC is able to carry out power-line compensation for installed loads that require a neutral conductor to operate. Different from the control strategies used in the most of UPQC applications in which the controlled quantities are non-sinusoidal, this UPQC employs a dual compensation strategy, such that the controlled quantities are always sinusoidal. Thereby, the series converter is controlled to act as a sinusoidal current source, whereas the parallel converter operates as a sinusoidal voltage source. Thus, because the controlled quantities are sinusoidal, it is possible to reduce the complexity of the algorithms used to calculate the compensation references. Therefore, since the voltage and current controllers are implemented into the synchronous reference frame, their control references are continuous, decreasing the steady-state errors when traditional proportional-integral controllers are employed. Static and dynamic performances, as well as the effectiveness of the dual UPQC are evaluated by means of experimental results.

 KEYWORDS:

  1. Active filter
  2. Dual control strategy
  3. Power conditioning
  4. Three-phase distribution systems
  5. UPQC

SOFTWARE: MATLAB/SIMULINK

CIRCUIT DIAGRAM:

Fig. 1. 3P4W distribution system based on UPQC topology connected to 3P3W power system.

EXPECTED SIMULATION RESULTS:

 Fig. 2. Experimental results for the loads presented in Table III: (a) UPQC currents for unbalanced three-phase -phase load (1) (20 A/div, 5 ms/div): Load currents (𝑖𝐿𝑎, 𝑖𝐿𝑏, 𝑖𝐿𝑐) and 𝑖𝐿𝑛, Compensated source currents (𝑖𝑠𝑎, 𝑖𝑠𝑏, 𝑖𝑠𝑐), and Currents of the parallel converter (𝑖𝑐𝑎, 𝑖𝑐𝑏, 𝑖𝑐𝑐) and 𝑖𝑐𝑛; (b) Currents and voltages of phase “a” of the UPQC for the unbalanced three-phase load (2) (20 A/div, 100V/div, 5 ms/div): Load currents (𝑖𝐿𝑎, 𝑖𝐿𝑏, 𝑖𝐿𝑐); Currents of phase “a”: load 𝑖𝐿𝑎, parallel converter 𝑖𝑐𝑎 and source 𝑖𝑠𝑎; voltages and currents of phase “a”: load current 𝑖𝐿𝑎 , source current 𝑖𝑠𝑎, utility voltage 𝑣𝑠𝑎 and load voltage 𝑣𝐿𝑎, (c) UPQC currents for three-phase load (1) (2.5 ms/div): Load currents (𝑖𝐿𝑎, 𝑖𝐿𝑏, 𝑖𝐿𝑐) (5 A/div), Source compensated currents (𝑖𝑠𝑎, 𝑖𝑠𝑏, 𝑖𝑠𝑐) (10 A/div), Parallel converter currents (𝑖𝑐𝑎, 𝑖𝑐𝑏, 𝑖𝑐𝑐) (10 A/div).

Fig. 3. Voltages of the UPQC under utility harmonics and unbalances for the unbalanced three-phase load (1): (a) Utility voltages (𝑣𝑠𝑎, 𝑣𝑠𝑏, 𝑣𝑠𝑐) (50 V/div, 2,5ms/div), Load voltages (𝑣𝐿𝑎, 𝑣𝐿𝑏, 𝑣𝑠𝐿) (50 V/div, 2,5ms/div) and series compensating voltages (𝑣𝐶𝑎, 𝑣𝐶𝑏 and 𝑣𝐶𝑐) (50 V/div, 2,5ms/div); (b) (a) Utility voltages (𝑣𝑠𝑎, 𝑣𝑠𝑏, 𝑣𝑠𝑐) (50 V/div, 2,5ms/div), Load voltages (𝑣𝐿𝑎, 𝑣𝐿𝑏, 𝑣𝑠𝐿) (50 V/div, 2,5ms/div) and series compensating voltages (𝑣𝐶𝑎, 𝑣𝐶𝑏 and 𝑣𝐶𝑐) (50 V/div, 2,5ms/div)

Fig. 4. Voltages and current of the UPQC for the unbalanced three-phase load 1: (a) DC-bus voltage (𝑉𝐷𝐶) (100 V/div, 500ms/div) and load currents (𝑖𝐿𝑎, 𝑖𝐿𝑏, 𝑖𝐿𝑐) (20 A/div, 500ms/div); (b) DC-bus voltage (𝑉𝐷𝐶) (100 V/div, 500ms/div) and source currents (𝑖𝑠𝑎, 𝑖𝑠𝑏, 𝑖𝑠𝑐) (20 A/div, 500ms/div); (c) DC-bus voltage (𝑉𝐷𝐶) (100 V/div, 5ms/div) and details of the source currents (𝑖𝑠𝑎, 𝑖𝑠𝑏, 𝑖𝑠𝑐) after the first load transient (20 A/div, 5ms/div).

Fig. 5. UPQC under voltage sag disturbance (phase ‘a’): utility voltage (𝑣𝑠𝑎), load voltage (𝑣𝐿𝑎) and series compensating voltage (𝑣𝐶𝑎) (200 V/div, 25ms/div).

 CONCLUSION:

This paper presents a practical and versatile application based on UPQC, which can be used in three-phase three-wire (3P3W), as well as three-phase four-wire (3P4W) distribution systems. It was demonstrated that the UPQC installed at a 3P3W system plant site was able to perform universal active filtering even when the installed loads required a neutral conductor for connecting one or more single-phase loads (3P4W). The series-parallel active filtering allowed balanced and sinusoidal input currents, as well as balanced, sinusoidal and regulated output voltages. By using a dual control compensating strategy, the controlled voltage and current quantities are always sinusoidal. Therefore, it is possible to reduce the complexity of the algorithms used to calculate the compensation references. Furthermore, since voltage and current SRF-based controllers are employed, the control references become continuous, reducing the steady-state errors when conventional PI controllers are used. Based on digital signal processing and by means of extensive experimental tests, static and dynamic performances, as well as the effectiveness of the dual UPQC were evaluated, validating the theoretical development.

REFERENCES:

[1] H. Fujita, and H. Akagi, “The unified power quality conditioner: The integration of series and shunt active filters,” IEEE Trans. Power Electron., vol. 13, no. 2, pp. 315-322, Mar. 1998.

[2] R. J. M. Santos,. J. C. Cunha, and M. Mezaroba, “A simplified control technique for a dual unified power quality conditioner,” IEEE Trans. Ind. Electron., vol. 61, no. 11, pp. 5851-5860, Nov. 2014.

[3] B.W. França, L.F. Silva, M. A Aredes, and M., Aredes, “An improved iUPQC controller to provide additional grid-voltage regulation as a STATCOM,” IEEE Trans. Ind. Electron., , vol. 62, no. 3, pp. 1345-1352, Mar. 2015.

[4] R. A. Modesto, S. A. O. Silva, and A. A., Oliveira, “Power quality improvement using a dual unified power quality conditioner/uninterruptible power supply in three-phase four-wire systems,” IET Power Electronics, vol. 8, no. 3, pp. 1595-1605, Sept. 2015.

[5] V. Khadkikar, “Enhancing electric power quality using UPQC: A comprehensive overview,” IEEE Trans. Power Electron., vol. 27, no. 5, pp. 2284-2297, May 2012.