Core Electrical Engineering Projects

AT16-01 Generation of Higher Number of Voltage Levels by stacking inverters of lower multilevel structure with low voltage devices for drives 2016 IEEE
AT16-02 A Novel Multilevel Multi-Output Bidirectional Active Buck PFC Rectifier 2016 IEEE
AT16-03 Optimal Pulse width Modulation of Medium-Voltage Modular Multilevel Converter 2016 IEEE
AT16-04  Novel Family of Single-Phase Modified Impedance-Source Buck-Boost Multilevel Inverters with Reduced Switch Count 2016 IEEE
AT16-05  Adaptive Neuro Fuzzy Inference System Least Mean Square Based Control Algorithm for DSTATCOM 2016 IEEE
AT16-06 An Islanding Detection Method for Inverter-Based

Distributed Generators Based on the Reactive Power Disturbance

2016 IEEE
AT16-07 Quasi-Z-Source Inverter With a T-Type Converter in Normal and Failure Mode 2016 IEEE
AT16-08 Real-Time Implementation of Model Predictive

Control on 7-Level Packed U-Cell Inverter

2016 IEEE
AT16-09 High frequency inverter topologies integrated with the coupled inductor bridge arm 2016 IET

Electrical engineering is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.

Electrical engineering has now subdivided into a wide range of sub fields including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.

Electrical engineers typically hold a degree in electrical engineering or electronic engineering. Practicing engineers may have professional certification and be members of a professional body. Such bodies include the Institute of Electrical and Electronics Engineers (IEEE) and the Institution of Engineering and Technology (professional society) (IET).

Electrical engineers work in a very wide range of industries and the skills required are likewise variable. These range from basic circuit theory to the management skills required of a project manager. The tools and equipment that an individual engineer may need are similarly variable, ranging from a simple voltmeter to a top end analyzer to sophisticated design and manufacturing software.

 

List of Electrical Engineering Projects

AT01 An Integrated Boost Resonant Converter for Photovoltaic Applications 2013-14 IEEE
AT02 Bridgeless SEPIC Converter With a Ripple-Free Input Current 2013-14 IEEE
AT03 An Advanced Power Electronics Interface for Electric Vehicles Applications 2013-14 IEEE
AT04 A High-Efficiency Solar Array Simulator Implemented by an LLC Resonant DC–DC Converter 2013-14 IEEE
AT05 A Novel Reduced Switching Loss Bidirectional AC/DC Converter PWM Strategy with Feed-Forward Control for Grid-Tied Micro Grid Systems 2013-14 IEEE
AT06 Coordinated Control and Energy Management of Distributed Generation Inverters in a Microgrid 2013-14 IEEE
AT07 A New ZVS DC/DC Converter With Three APWM Circuits 2013-14 IEEE
AT08 Analysis and Implementation of a Single Stage Flyback PV-Micro Inverter with Soft Switching 2013-14 IEEE
AT09 A Bridgeless Boost Rectifier for Low-Voltage Energy Harvesting Applications 2013-14 IEEE

Electrical engineering is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.

Electrical engineering has now subdivided into a wide range of sub fields including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.

Electrical engineers typically hold a degree in electrical engineering or electronic engineering. Practicing engineers may have professional certification and be members of a professional body. Such bodies include the Institute of Electrical and Electronics Engineers (IEEE) and the Institution of Engineering and Technology (professional society) (IET).

Electrical engineers work in a very wide range of industries and the skills required are likewise variable. These range from basic circuit theory to the management skills required of a project manager. The tools and equipment that an individual engineer may need are similarly variable, ranging from a simple voltmeter to a top end analyzer to sophisticated design and manufacturing software.

 

Electrical Engineering Projects

Electrical engineering

Electrical engineering is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.

Electrical engineering has now subdivided into a wide range of sub fields including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.

Electrical engineers typically hold a degree in electrical engineering or electronic engineering. Practicing engineers may have professional certification and be members of a professional body. Such bodies include the Institute of Electrical and Electronics Engineers (IEEE) and the Institution of Engineering and Technology (professional society) (IET).

Electrical engineers work in a very wide range of industries and the skills required are likewise variable. These range from basic circuit theory to the management skills required of a project manager. The tools and equipment that an individual engineer may need are similarly variable, ranging from a simple voltmeter to a top end analyzer to sophisticated design and manufacturing software.

post

IEEE Electrical projects training and development

Electrical engineering is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.

Electrical engineering has now subdivided into a wide range of sub fields including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.

Electrical engineers typically hold a degree in electrical engineering or electronic engineering. Practicing engineers may have professional certification and be members of a professional body. Such bodies include the Institute of Electrical and Electronics Engineers (IEEE) and the Institution of Engineering and Technology (professional society) (IET).

Electrical engineers work in a very wide range of industries and the skills required are likewise variable. These range from basic circuit theory to the management skills required of a project manager. The tools and equipment that an individual engineer may need are similarly variable, ranging from a simple voltmeter to a top end analyzer to sophisticated design and manufacturing software.

 

Asoka Technologies