A New Control Strategy for Active and Reactive Power Control of Three-Level VSC Based HVDC System


This paper displays another control procedure no doubt and receptive power control of three-level multipulse voltage source converter based High Voltage DC (HVDC) transmission framework working at Fundamental Frequency Switching (FFS). A three-level voltage source converter replaces the regular two-level VSC and it is intended for the genuine and responsive power control is each of the four quadrants task. Another control strategy is produced for accomplishing the receptive power control by changing the beat width and by keeping the dc connect voltage consistent. The enduring state and dynamic exhibitions of HVDC framework interconnecting two unique frequencies arrange are shown for dynamic and responsive forces control. Complete quantities of transformers utilized in the framework are decreased in contrast with two dimension VSCs. The execution of the HVDC framework is likewise enhanced as far as decreased music level even at essential recurrence exchanging.



Fig. 1 A three-level 24-Pulse voltage source converter based HVDC system



Fig. 2 Control scheme of three-level VSC based HVDC system using dynamic dead angle (β) Control



Fig. 3 Performance of rectifier station during simultaneous real and reactive power control of three-level 24-pulse VSC based HVDC system


Fig. 4 Performance of inverter station during simultaneous real and reactive power control of three-level 24-pulse VSC based HVDC system


Fig. 5 Variation of angles (δ) and (β) values of three-level 24-pulse VSC based HVDC system during simultaneous real and reactive power control


Another control technique for three-level 24-beat voltage source converter setup has been intended for HVDC framework. The execution of this 24-beat VSC based HVDC framework utilizing the control technique has been exhibited in dynamic power control in bidirectional, free control of the receptive power and power quality enhancement. Another powerful dead point (β) control has been presented for three-level voltage source converter working at crucial recurrence exchanging. In this control the HVDC framework activity is effectively exhibited and furthermore an examination of (β) esteem for different responsive power necessity and symphonious execution has been completed in detail. In this way, the determination of converter task locale is progressively adaptable as indicated by the necessity of the responsive power and power quality.