Solar Photovoltaic Array Fed Luo Converter Based BLDC Motor Driven Water Pumping System

ABSTRACT:  

This paper deals with the solar photovoltaic (SPV) array fed water- pumping system using a Luo converter as an intermediate DC-DC converter and a permanent magnet brushless DC (BLDC) motor to drive a centrifugal water pump. Among the different types of DC-DC converters, an elementary Luo converter is selected in order to extract the maximum power available from the SPV array and for safe starting of BLDC motor. The elementary Luo converter with reduced components and single semiconductor switch has inherent features of reducing the ripples in its output current and possessing a boundless region for maximum power point tracking (MPPT). The electronically commutated BLDC motor is used with a voltage source inverter (VSI) operated at fundamental frequency switching thus avoiding the high frequency switching losses resulting in a high efficiency of the system. The SPV array is designed such that the power at rated DC voltage is supplied to the BLDC motor-pump under standard test condition and maximum switch utilization of Luo converter is achieved which results in efficiency improvement of the converter. Performances at various operating conditions such as starting, dynamic and steady state behavior are analyzed and suitability of the proposed system is demonstrated using MATLAB/Simulink based simulation results.

KEYWORDS:

  1. SPV array
  2. Luo converter
  3. BLDC motor
  4. Centrifugal water pump
  5. MPPT
  6. Switch utilization

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:

Fig. 1 Configuration of proposed SPV array-Luo converter fed BLDC motor drive for water pumping system.

 EXPECTED SIMULATION RESULTS:

 

Fig. 2 Performances of SPV array of the proposed SPV array-Luo converter

fed BLDC motor drive for water pumping system.

Fig. 3 Performances of Luo converter of the proposed SPV array-Luo

converter fed BLDC motor drive for water pumping system.

 

Fig. 4 Performances of BLDC motor-pump of the proposed SPV array-Luo

converter fed BLDC motor drive for water pumping system.

 CONCLUSION:

A solar photovoltaic array fed Luo converter based BLDC motor has been proposed to drive water-pumping system. The proposed system has been designed, modeled and simulated using MATLAB along with its Simulink and sim-power system toolboxes. Simulated results have demonstrated the suitability of proposed water pumping system. SPV array has been properly sized such that system performance is not influenced by the variation in atmospheric conditions and the associated losses and maximum switch utilization of Luo converter is achieved. Luo converter has been operated in CCM in order to reduce the stress on power devices. Operating the VSI in 120° conduction mode with fundamental frequency switching eliminates the losses caused by high frequency switching operation. Stable operation of motor pump system and safe starting of BLDC motor are other important features of the proposed system.

REFERENCES:

[1] Fei Ding, Peng Li, Bibin Huang, Fei Gao, Chengdi Ding and Chengshan Wang, “Modeling and simulation of grid-connected hybrid photovoltaic/battery distributed generation system,” in China Int. Conf. Electricity Distribution (CICED), 13-16 Sept. 2010, pp.1-10.

[2] Zhou Xuesong, Song Daichun, Ma Youjie and Cheng Deshu, “The simulation and design for MPPT of PV System Based on Incremental Conductance Method,” in WASE Int. Conf. Information Eng. (ICIE), vol.2, 14-15 Aug. 2010, pp.314-317.

[3] B. Subudhi and R. Pradhan, “A Comparative Study on Maximum Power Point Tracking Techniques for Photovoltaic Power Systems,” IEEE Trans. Sustainable Energ., vol. 4, no. 1, pp. 89-98, Jan. 2013.

[4] M. A. Eltawil and Z. Zhao, “MPPT techniques for photovoltaic applications,” Renewable and Sustainable Energy Reviews, vol. 25, pp. 793-813, Sept. 2013.

BLDC Motor Driven Solar PV Array Fed Water Pumping System Employing Zeta Converter

ABSTRACT:

 This paper proposes a solar photovoltaic (SPV) array fed water pumping system utilizing a zeta converter as an intermediate DC-DC converter in order to extract the maximum available power from the SPV array. Controlling the zeta converter in an intelligent manner through the incremental conductance maximum power point tracking (INC-MPPT) algorithm offers the soft starting of the brushless DC (BLDC) motor employed to drive a centrifugal water pump coupled to its shaft. Soft starting i.e. the reduced current starting inhibits the harmful effect of the high starting current on the windings of the BLDC motor. A fundamental frequency switching of the voltage source inverter (VSI) is accomplished by the electronic commutation of the BLDC motor, thereby avoiding the VSI losses occurred owing to the high frequency switching. A new design approach for the low valued DC link capacitor of VSI is proposed. The proposed water pumping system is designed and modeled such that the performance is not affected even under the dynamic conditions. Suitability of the proposed system under dynamic conditions is demonstrated by the simulation results using MATLAB/Simulink software.

KEYWORDS:

  1. SPV array
  2. Zeta converter
  3. INC-MPPT
  4. BLDC motor
  5. Electronic commutation

 SOFTWARE: MATLAB/SIMULINK

CIRCUIT DIAGRAM:

 

 

Fig.1 Configuration of proposed SPV array-Zeta converter fed BLDC motor drive for water pumping system.

EXPECTED SIMULATION RESULTS:

 

Fig.2 Performances of the proposed SPV array based Zeta converter fed BLDC motor drive for water pumping system (a) SPV array variables, (b) Zeta converter variables, and (c) BLDC motor-pump variables.

 CONCLUSION:

The SPV array-zeta converter fed VSI-BLDC motor-pump for water pumping has been proposed and its suitability has been demonstrated by simulated results using MATLAB/Simulink and its sim-power-system toolbox. First, the proposed system has been designed logically to fulfil the various desired objectives and then modelled and simulated to examine the various performances under starting, dynamic and steady state conditions. The performance evaluation has justified the combination of zeta converter and BLDC motor drive for SPV array based water pumping. The system under study availed the various desired functions such as MPP extraction of the SPV array, soft starting of the BLDC motor, fundamental frequency switching of the VSI resulting in a reduced switching losses, reduced stress on IGBT switch and the components of zeta converter by operating it in continuous conduction mode and stable operation. Moreover, the proposed system has operated successfully even under the minimum solar irradiance.

REFERENCES:

[1] M. Uno and A. Kukita, “Single-Switch Voltage Equalizer Using Multi- Stacked Buck-Boost Converters for Partially-Shaded Photovoltaic Modules,” IEEE Transactions on Power Electronics, no. 99, 2014.

[2] R. Arulmurugan and N. Suthanthiravanitha, “Model and Design of A Fuzzy-Based Hopfield NN Tracking Controller for Standalone PV Applications,” Electr. Power Syst. Res. (2014). Available: http://dx.doi.org/10.1016/j.epsr.2014.05.007

[3] S. Satapathy, K.M. Dash and B.C. Babu, “Variable Step Size MPPT Algorithm for Photo Voltaic Array Using Zeta Converter – A Comparative Analysis,” Students Conference on Engineering and Systems (SCES), pp.1-6, 12-14 April 2013.

[4] A. Trejos, C.A. Ramos-Paja and S. Serna, “Compensation of DC-Link Voltage Oscillations in Grid-Connected PV Systems Based on High Order DC/DC Converters,” IEEE International Symposium on Alternative Energies and Energy Quality (SIFAE), pp.1-6, 25-26 Oct. 2012.

[5] G. K. Dubey, Fundamentals of Electrical Drives, 2nd ed. New Delhi, India: Narosa Publishing House Pvt. Ltd., 2009.

Single Stage SPV Array Fed Speed Sensorless Vector Control of Induction Motor Drive for Water Pumping

ABSTRACT:

This paper deals with a single stage solar powered speed sensorless vector controlled induction motor drive for water pumping system which is superior to conventional motor drive in terms of reliability and cost. The speed is estimated through estimated stator flux. The proposed system includes solar PV (photovoltaic) array, a three-phase voltage source inverter (V SI) and a motor-pump assembly. An incremental and conductance (I&C) MPPT (maximum power point tracking) algorithm is used to harness maximum power from SPV array. The smooth starting of the motor is attained by vector control of an induction motor. The desired configuration is designed and simulated in MATLAB/ Simulink platform and the design, modeling and control of the system are validated through demonstration of simulation results.

 

KEYWORDS:

  1. Speed Sensor-less Control
  2. Stator Field oriented Vector Control
  3. Solar Photovoltaic (PV)
  4. I&C MPPT Algorithm
  5. Induction Motor Drive (IMD)
  6. Water Pump

 

SOFTWARE: MATLAB/SIMULINK

 

BLOCK DIAGRAM:

Fig. 1. Schemetic Diagram of Single Stage Solar Powered Induction Motor Drive

  

EXPECTED SIMULATION RESULTS:

Fig. 2 Starting and MPPT of Solar PV Fed System at IOOOW/m’

Fig. 3. Speed Estimation during Starting and MPPT of Solar PV Fed System at IOOOW/m’

Fig. 4. Smooth Starting of lnduction Motor Fed Water Pumping System at IOOOW/m’

Fig. 5: Performance of the Solar PV Panel during Decrease in Insolation from IOOOW/m’to 500W/m’

Fig. 6: Induction Motor Performance during Decrease in Insolation from IOOOW/m’ to 500W/m’

Fig. 7: Performance of the Solar PV Panel during Increase in Insolation from 500W/m’ to IOOOW/m’

Fig. 8: Induction Motor Performance of the System during Increase in Insolation from 500W/m’ to 1000W/m’

 

CONCLUSION:

A single stage solar PV array fed speed sensor-Iess vector-controlled induction motor drive has been operated under various conditions and the steady-state and dynamic behavior has been found quite suitable for water pumping. The torque and stator tlux have been controlled independently. The motor is started smoothly. The reference speed is generated by stator flux oriented vector control scheme which has been proposed by controlling the voltage at DC bus and pwnp affinity law is used to regulate the speed of an induction motor. The SPV array has maintained peak power point during chan ging irradiance. This is achieved by using incremental and conductance (I&C) based MPPT algorithrn. The speed PI controller has controlled the motor stator currents and controlled the tlow rate of pwnp. Smooth and stable operation of IMD has been achieved with stable torque profile for wide range of speed control. Simulation results have displayed that the controller behavior is found satisfactory under steady state and dynamic condition of insolation change.

 

REFERENCES:

  • Foster, M. Ghassemi and M. Cota, Solar energy: Renewable energy and the environment, CRC Press, Taylor and francis Group, Inc. 2010.
  • Kolhe, J. C. Joshi and D. P. Kothari, “Performance analysis of a direct1y coupled photovoltaic water-pumping system”, IEEE Trans. on Energy Convers., vol. 19, no. 3, pp. 613-618, Sept. 2004.
  • V. M. Caracas, G. D. C. Farias, L. F. M. Teixeira and L. A D. S. Ribeiro, “Implementation of a High-Efficiency, High-Lifetime, and Low-Cost Converter for an Autonomous Photovoltaic Water Pumping System”, IEEE Trans. Ind. Appl., vol. 50, no. I, pp. 631- 641, Jan.-Feb. 2014.
  • Kumar and B. Singh, ” Buck-boost converter fed BLDC motor for solar PV array based water pumping “, IEEE Int. Conf Power Electron. Drives and Energy Sys. (PEDES), 2014.
  • Zhang Songbai, Zheng Xu, Youchun Li and Yixin Ni, “Optimization of MPPT step size in stand-alone solar pumping systems”, IEEE Power Eng. Society Gen. Meeting, June 2006.

BLDC Motor Driven Solar PV Array Fed Water Pumping System Employing Zeta Converter

ABSTRACT:

This paper proposes a simple, cost effective and efficient brushless DC (BLDC) motor drive for solar photovoltaic (SPV) array fed water pumping system. A zeta converter is utilized in order to extract the maximum available power from the SPV array. The proposed control algorithm eliminates phase current sensors and adapts a fundamental frequency switching of the voltage source inverter (VSI), thus avoiding the power losses due to high frequency switching. No additional control or circuitry is used for speed control of the BLDC motor. The speed is controlled through a variable DC link voltage of VSI. An appropriate control of zeta converter through the incremental conductance maximum power point tracking (INC-MPPT) algorithm offers soft starting of the BLDC motor. The proposed water pumping system is designed and modeled such that the performance is not affected under dynamic conditions. The suitability of proposed system at practical operating conditions is demonstrated through simulation results using MATLAB/ Simulink followed by an experimental validation.

KEYWORDS:

  1. BLDC motor
  2. SPV array
  3. Water pump
  4. Zeta converter
  5. VSI
  6. INC-MPPT

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:

 

Fig.1 Configuration of proposed SPV array-Zeta converter fed BLDC motor drive for water pumping system.

EXPECTED SIMULATION RESULTS:

 

Fig.2 Performances of the proposed SPV array based Zeta converter fed BLDC motor drive for water pumping system (a) SPV array variables, (b) Zeta converter variables, and (c) BLDC motor-pump variables.

CONCLUSION:

The SPV array-zeta converter fed VSI-BLDC motor-pump for water pumping has been proposed and its suitability has been demonstrated by simulated results using MATLAB/Simulink and its sim-power-system toolbox. First, the proposed system has been designed logically to fulfil the various desired objectives and then modelled and simulated to examine the various performances under starting, dynamic and steady state conditions. The performance evaluation has justified the combination of zeta converter and BLDC motor drive for SPV array based water pumping. The system under study availed the various desired functions such as MPP extraction of the SPV array, soft starting of the BLDC motor, fundamental frequency switching of the VSI resulting in a reduced switching losses, reduced stress on IGBT switch and the components of zeta converter by operating it in continuous conduction mode and stable operation. Moreover, the proposed system has operated successfully even under the minimum solar irradiance.

REFERENCES:

[1] M. Uno and A. Kukita, “Single-Switch Voltage Equalizer Using Multi- Stacked Buck-Boost Converters for Partially-Shaded Photovoltaic Modules,” IEEE Transactions on Power Electronics, no. 99, 2014.

[2] R. Arulmurugan and N. Suthanthiravanitha, “Model and Design of A Fuzzy-Based Hopfield NN Tracking Controller for Standalone PV Applications,” Electr. Power Syst. Res. (2014). Available: http://dx.doi.org/10.1016/j.epsr.2014.05.007

[3] S. Satapathy, K.M. Dash and B.C. Babu, “Variable Step Size MPPT Algorithm for Photo Voltaic Array Using Zeta Converter – A Comparative Analysis,” Students Conference on Engineering and Systems (SCES), pp.1-6, 12-14 April 2013.

[4] A. Trejos, C.A. Ramos-Paja and S. Serna, “Compensation of DC-Link Voltage Oscillations in Grid-Connected PV Systems Based on High Order DC/DC Converters,” IEEE International Symposium on Alternative Energies and Energy Quality (SIFAE), pp.1-6, 25-26 Oct. 2012.

[5] G. K. Dubey, Fundamentals of Electrical Drives, 2nd ed. New Delhi, India: Narosa Publishing House Pvt. Ltd., 2009.