Control and Implementation of a Standalone Solar Photo-Voltaic Hybrid System

ABSTRACT:  

A control algorithm for a standalone solar photovoltaic (PV)-diesel-battery hybrid system is achive in this paper. The proposed system deals with the irregular nature of the energy produce by the PV array and it also provides power quality improvement. The PV array is combined through a DC-DC boost converter and controlled using a maximum power point tracking (MPPT) algorithm to obtain the maximum power under varying operating conditions.

The battery energy storage system (BESS) is combined to the diesel engine generator (DG) set for the regulate load management and power flow within the system. The access based control algorithm is used for load balancing, harmonics elimination and reactive power compensation under three phase four-wire linear and nonlinear loads. A four-leg voltage source converter (VSC) with BESS also provides neutral current compensation. The performance of proposed standalone hybrid system is designed under different loading conditions experimentally on a developed prototype of the system.

KEYWORDS:

  1. Admittance based control algorithm
  2. BESS
  3. DG set
  4. Four-leg VSC
  5. Neutral current compensation
  6. Power quality
  7. Solar photovoltaic array
  8. Standalone system

 SOFTWARE: MATLAB/SIMULINK

CIRCUIT DIAGRAM:

Fig. 1. Schematic diagram of the proposed system

 EXPECTED SIMULATION RESULTS:

Fig. 2. Performance of proposed system under unbalance nonlinear load

CONCLUSION:

 The access based control technique has been used for a PV-diesel-battery hybrid system for an continuous power supply and power quality improvement. The incremental based MPPT algorithm has forwarded maximum solar array power under varying conditions of temperature and insolation distribution.

The technique has been show to eliminate harmonics, load balancing and to provide neutral current compensation by incorporating four-leg VSC in the system. The PCC voltage and frequency have been maintained constant. Satisfactory performance of the system has been observed through test results obtained for steady state and dynamic conditions under both linear/nonlinear loads.

REFERENCES:

[1] Z. Jiang, “Power Management of Hybrid Photovoltaic-Fuel Cell Power Systems”, Proc. of IEEE Power Engg. Society General Meeting, Montreal Quebec, Canada, 2006.

[2] A. Naik, R.Y. Udaykumar and V. Kole, “Power management of a hybrid PEMFC-PV and Ultra capacitor for stand-alone and grid connected applications”, Proc. of IEEE Int. Conf. Power Electron. Drives and Energy Sys. (PEDES), 2012, pp. 1-5.

[3] J. Philip, C. Jain, , K. Kant, B. Singh, S. Mishra, A. Chandra and K. Al- Haddad “Control and implementation of a standalone solar photo-voltaic hybrid system”, Proc. of IEEE Industry Applications Society Annual Meeting, Addison, TX, 18- 22 Oct. 2015, pp.1-8.

[4] J. Philip, B. Singh and S. Mishra, “Design and operation for a standalone DG-SPV-BES microgrid system”, Proc. of 6thIEEE Power India Int. Conf. (PIICON), Delhi, 5-7 Dec, 2014, pp.1-6.

BLDC Motor Driven Solar PV Array Fed Water Pumping System Employing Zeta Converter

BLDC Motor Driven Solar PV Array Fed Water Pumping System Employing Zeta Converter

 ABSTRACT:

This paper proposes a simple, cost effective and efficient brushless DC (BLDC) motor drive for solar photovoltaic (SPV) array fed water pumping system. A zeta converter is utilized in order to extract the maximum available power from the SPV array. The proposed control algorithm eliminates phase current sensors and adapts a fundamental frequency switching of the voltage source inverter (VSI), thus avoiding the power losses due to high frequency switching. No additional control or circuitry is used for speed control of the BLDC motor. The speed is controlled through a variable DC link voltage of VSI. An appropriate control of zeta converter through the incremental conductance maximum power point tracking (INC-MPPT) algorithm offers soft starting of the BLDC motor. The proposed water pumping system is designed and modeled such that the performance is not affected under dynamic conditions. The suitability of proposed system at practical operating conditions is demonstrated through simulation results using MATLAB/ Simulink followed by an experimental validation.

KEYWORDS:

  1. BLDC motor
  2. SPV array
  3. Water pump
  4. Zeta converter
  5. VSI
  6. INC-MPPT

 

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:

Fig.1 Configuration of proposed SPV array-Zeta converter fed BLDC motor drive for water pumping system

EXPECTED SIMULATION RESULTS:

Fig.2 Performances of the proposed SPV array based Zeta converter fed BLDC motor drive for water pumping

system (a) SPV array variables, (b) Zeta converter variables, and (c) BLDC motor-pump variables.

 

CONCLUSION:

The SPV array-zeta converter fed VSI-BLDC motor-pump for water pumping has been proposed and its suitability has been demonstrated by simulated results using MATLAB/Simulink and its sim-power-system toolbox. First, the proposed system has been designed logically to fulfil the various desired objectives and then modelled and simulated to examine the various performances under starting, dynamic and steady state conditions. The performance evaluation has justified the combination of zeta converter and BLDC motor drive for SPV array based water pumping. The system under study availed the various desired functions such as MPP extraction of the SPV array, soft starting of the BLDC motor, fundamental frequency switching of the VSI resulting in a reduced switching losses, reduced stress on IGBT switch and the components of zeta converter by operating it in continuous conduction mode and stable operation. Moreover, the proposed system has operated successfully even under the minimum solar irradiance.

REFERENCES:

  • Uno and A. Kukita, “Single-Switch Voltage Equalizer Using Multi- Stacked Buck-Boost Converters for Partially-Shaded Photovoltaic Modules,” IEEE Transactions on Power Electronics, no. 99, 2014.
  • Arulmurugan and N. Suthanthiravanitha, “Model and Design of A Fuzzy-Based Hopfield NN Tracking Controller for Standalone PV Applications,” Electr. Power Syst. Res. (2014). Available: http://dx.doi.org/10.1016/j.epsr.2014.05.007
  • Satapathy, K.M. Dash and B.C. Babu, “Variable Step Size MPPT Algorithm for Photo Voltaic Array Using Zeta Converter – A Comparative Analysis,” Students Conference on Engineering and Systems (SCES), pp.1-6, 12-14 April 2013.
  • Trejos, C.A. Ramos-Paja and S. Serna, “Compensation of DC-Link Voltage Oscillations in Grid-Connected PV Systems Based on High Order DC/DC Converters,” IEEE International Symposium on Alternative Energies and Energy Quality (SIFAE), pp.1-6, 25-26 Oct. 2012.
  • K. Dubey, Fundamentals of Electrical Drives, 2nd ed. New Delhi, India: Narosa Publishing House Pvt. Ltd., 2009.