Electric Spring for Voltage and Power Stability and Power Factor Correction

ABSTRACT:  

Electric Spring (ES), a new smart grid technology, has earlier been used for providing voltage and power stability in a weakly regulated/stand-alone renewable energy source powered grid. It has been proposed as a demand side management technique to provide voltage and power regulation. In this paper, a new control scheme is presented for the implementation of the
electric spring, in conjunction with non-critical building loads like electric heaters, refrigerators and central air conditioning system. This control scheme would be able to provide power factor correction of the system, voltage support, and power balance for the critical loads, such as the building’s security system, in addition to the existing characteristics of electric spring of voltage and power stability. The proposed control scheme is compared with original ES’s control scheme where only reactive-power is injected. The improvised control scheme opens new avenues for the utilization of the electric spring to a greater extent by providing voltage and power stability and enhancing the power quality in the renewable energy powered microgrids

 BLOCK DIAGRAM:

Fig. 1. Electric Spring in a circuit

EXPECTED SIMULATION RESULTS:

Fig. 2. Over-voltage, Conventional ES: Power Factor of system (ES turned on at t = 0.5 sec)

Fig. 3. Over-voltage, Conventional ES: Active and Reactive power across critical load, non-critical load, and electric spring (ES turned on at t=0.5 sec)

Fig. 4 Under-voltage, Conventional ES: RMS Line voltage, ES Voltage, and Non-Critical load voltage (ES turned on at t=0.5 sec)

Fig. 5. Under-voltage, Conventional ES: Power Factor of system (ES turned on at t = 0.5 sec)

Fig. 6. Under-voltage, Conventional ES: Active and Reactive power across critical load, non-critical load, and electric spring (ES turned on at t=0.5 sec)

Fig. 7. Over-voltage, Improvised ES: RMS Line voltage, ES Voltage, and Non-Critical load voltage (ES turned on at t=0.5 sec)

Fig. 8. Over-voltage, Improvised ES: Power Factor of system (ES turned on at t = 0.5 sec)

CONCLUSION

In this paper as well as earlier literature s, the Electric Spring
was demonstrated as an ingenious solution to the problem of
voltage and power instability associated with renewable energy
powered grids. Further in this paper, by the implementation of
the proposed improvised control scheme it was demonstrated
that the improvised Electric Spring (a) maintained line voltage
to reference voltage of 230 Volt, (b) maintained constant
power to the critical load and (c) improved overall power
factor of the system compared to the conventional ES. Also,
the proposed ‘input-voltage-input-current’ control scheme is
compared to the conventional ‘input-voltage’ control. It was
shown, through simulation and hardware-in-loop emulation,
that using a single device voltage and power regulation and
power quality improvement can be achieved.

Control Scheme

It was also shown that the improvised control scheme has merit over the conventional ES with only reactive power injection.
Also, it is proposed that electric spring could be embedded
in future home appliances. If many non-critical loads in the
buildings are equipped with ES, they could provide a reliable
and effective solution to voltage and power stability and in sit u
power factor correction in a renewable energy powered
micro-grids. It would be a unique demand side management
(D S M) solution which could be implemented without any
reliance on information and communication technologies.

REFERENCES

[1] S. Y. Hui, C. K. Lee, and F. F. Wu, “Electric springs – a new smart
grid technology,” IEEE Transactions on Smart Grid, vol. 3, no. 3, pp.
1552–1561, Sept 2012.
[2] S. Hui, C. Lee, and F. WU, “Power control circuit and
method for stabilizing a power supply,” 2012. [Online]. Available:
http://www.google.com/patents/US20120080420
[3] C. K. Lee, N. R. Ch a u d h u r i, B. Ch a u d h u r i, and S. Y. R. Hui, “Droop
control of distributed electric springs for stabilizing future power grid,”
IEEE Transactions on Smart Grid, vol. 4, no. 3, pp. 1558–1566, Sept
2013.
[4] C. K. Lee, B. Ch a u d h u r i, and S. Y. Hui, “Hardware and control
implementation of electric springs for stabilizing future smart grid with
intermittent renewable energy sources,” IEEE Journal of Emerging and
Selected Topics in Power Electronics, vol. 1, no. 1, pp. 18–27, March
2013.
[5] C. K. Lee, K. L. Che n g, and W. M. N g, “Load characterization of electric
spring,” in 2013 IEEE Energy Conversion Congress and Exposition, Sept
2013, pp. 4665–4670.

A Novel Design of PI Current Controller for PMSG-based Wind Turbine Considering Transient Performance Specifications and Control Saturation

ABSTRACT:

This paper introduces a novel plan procedure of decoupled PI current controller for changeless magnet synchronous generator (PMSG)- based breeze turbines sustaining a lattice fixing inverter through consecutive converter. In particular, the plan procedure comprises of consolidating aggravation eyewitness based control (DOBC) with criticism linearization (FBL) system to guarantee ostensible transient execution recuperation under model vulnerability. By rearranging the DOBC under the input linearizing control, it is demonstrated that the composite controller decreases to a decoupled PI current controller in addition to an extra term that has the primary job of recuperating the ostensible transient execution of the criticism linearization, particularly under advance changes in the reference. Also, an enemy of windup compensator emerges normally into the controller while considering the control input immersion to plan the  DOBC. This licenses to expel the impact of the immersion squares required to constrain the control input. The proposed control plot is executed and approved through experimentation directed on 22-post, 5 kW PMSG. The outcomes uncovered that the proposed system can effectively accomplish ostensible execution recuperation under model vulnerability just as enhanced transient exhibitions under control immersion.

 

BLOCK DIAGRAM:

 Fig. 1. Configuration of a direct-drive PMSG-based WECS connected

to the host grid.

EXPECTED SIMULATION RESULTS:

 

Fig. 2. System’s response under the composite controller consisting of the feedback controller (13) and the PI-DO (34)–(37). The controller was tested experimentally using the block diagram of Fig. 3. Specifically, the PI-DO (34)–(37) was evaluated with and without the consideration of the reference jump .

Fig. 3. System’s response under the composite controller consisting of the feedback controller (13) and the DOBC (25). The controller was tested experimentally using the block diagram depicted in Fig. 2.

Fig. 4. System’s response under a conventional PI current controller [17].

Fig. 5. Performance evaluation of the proposed PI-DO under model uncertainty.

Fig. 6. Experimental results: Performance testing of the proposed PI current controller under MPPT algorithm, with id (2 A/div), iq (4 A/div), ia (10 A/div), ws (5 [m/s]/div), iga (6 A/div), r (50 [rpm/min]/div), and time (400 ms/div)

CONCLUSION:

This paper has introduced a novel structure of decoupled PI controller to upgrade the transient execution for the present control of PMSG-based breeze turbine. The proposed controller strategy was built up by consolidating a DOBC with criticism linearizing control law. For reasons unknown, the composite controller has a decoupled PI-like structure in addition to two extra parts. The initial segment is fundamentally an enemy of windup compensator, while the second part utilizes the reference bounce data to counteracts the impact of the sudden advance changes in the power request on the transient reaction. This change of the decoupled PI controller grants to ensure zero enduring state blunder without giving up the ostensible transient execution indicated by the state input controller. This remarkable element can’t be accomplished under the current decoupled PI controller, especially when the model parameters are not precise. Trial tests have been performed, and the outcomes bolster the utilization of the reference bounce data to enhance the transient execution under the decoupled PI controller. Along these lines, the proposed methodology furnishes professionals with a substitute strategy in structuring a vigorous decoupled PI current controller for PMSG-based breeze vitality change framework.

Renewable Energy and Systems Projects for MTech using Matlab/Simulink in siddipet

Renewable Energy and Systems Projects for MTech using Matlab/Simulink in siddipet.

Software Used: Matlab/Simulink
Areas : Power Electronics and Drives, Power Systems, Renewable Energy and sources, etc
Download
Contact us:
email: asokatechnologies@gmail.com
website: www.asokatechnologies.in
Asoka technologies provide Power Electronics, Power Systems Projects for MTechusing Matlab/Simulink in siddipet.

ELECTRICAL ENGINEERING is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.
Electrical engineering has now subdivided into a wide range of sub fields including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.
POWER ELECTRONICS is the application of solid-state electronics to the control and conversion of electric power. The first high power electronic devices were mercury-arc valves. In modern systems the conversion is performed with semiconductor switching devices such as diodes, thyristors and transistors, pioneered by R. D. Middlebrook and others beginning in the 1950s. In contrast to electronic systems concerned with transmission and processing of signals and data, in power electronics substantial amounts of electrical energy are processed. An AC/DC converter (rectifier) is the most typical power electronics device found in many consumer electronic devices, e.g. television sets, personal computers, battery chargers, etc. The power range is typically from tens of watts to several hundred watts. In industry a common application is the variable speed drive (VSD) that is used to control an induction motor. The power range of VSDs start from a few hundred watts and end at tens of megawatts.

final year eee in ieee electrical projects in mancherial

final year eee in ieee electrical projects in mancherial. 
Software Used: Matlab/Simulink
Areas : Power Electronics and Drives, Power Systems, Renewable Energy and sources, etc
Download
Contact us:
email: asokatechnologies@gmail.com
website: www.asokatechnologies.in
Asoka technologies provide Academic Electrical Projects mancherial.
ELECTRICAL ENGINEERING is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.
Electrical engineering has now subdivided into a wide range of sub fields including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.

Renewable energy projects in 2018 hyderabad

Design and Evaluation of a Mini-Size SMES Magnet for Hybrid Energy Storage Application in a kW-Class Dynamic Voltage Restorer

A Filterless Single-Phase AC-AC Converter Based on  Coupled Inductors with Safe-Commutation Strategy  and Continuous Input Current

Novel Back EMF Zero Difference Point Detection Based Sensorless Technique for BLDC Motor

A Novel DVR-ESS-embedded wind energy conversion system

Dynamic Voltage Conditioner, a New Concept for Smart Low-Voltage Distribution System

Transformer-less dynamic voltage restorer based on buck-boost converter

A Generation of Higher Number of Voltage Levels by stacking inverters of lower multilevel structure with low voltage devices for drives

A Novel Multilevel Multi-Output Bidirectional Active Buck PFC Rectifier

Optimal Pulse width Modulation of Medium-Voltage Modular Multilevel Converter

Novel Family of Single-Phase Modified Impedance-Source Buck-Boost Multilevel Inverters with Reduced Switch Count

Adaptive Neuro Fuzzy Inference System Least Mean Square Based Control Algorithm for DSTATCOM

An Islanding Detection Method for Inverter-Based Distributed Generators Based on the Reactive Power Disturbance

Quasi-Z-Source Inverter With a T-TypeConverter in Normal and Failure Mode

Real-Time Implementation of Model Predictive Control on 7-Level Packed U-Cell Inverter

High frequency inverter topologies integrated with the coupled inductor bridge arm

Dynamic voltage restorer employing multilevel cascaded H-bridge inverter

Active power compensation method for single-phase current source rectifier without extra active switches

 

renewable energy projects

Voltage Sag and Swell Mitigation Using DSTATCOM in Renewable Energy Based Distributed Generation Systems

Voltage Sag and Swell Mitigation Using DSTATCOM

in Renewable Energy Based Distributed Generation Systems

ABSTRACT:

Renewable distributed generation systems are an alternative solution to provide energy locally near customers. However, the supplying of power without disturbance is the main challenge for utilities, especially for systems that integrate fluctuating renewable sources which can cause voltage sag and swell. In this paper, voltage sag and swell issues are investigated. The first studied scenario is related to the disturbance of the energy source and the second one is due to the installation of a heavy load with a sensitive load at the same supplying bus. A D-STATCOM is connected at the point of common coupling (pCC) to mitigate the voltage sag and sell problems. An energy storage battery has been installed at the DC-side of the compensator that gives the possibility to control the voltage at the PCC and exchange the active and reactive power with the grid. A linear proportional integral (PI) feed-forward controller supervises the compensator. The obtained results show that the D-STATCOM compensator behaves as a good solution to mitigate the voltage sag and swell in distribution grid.

 

KEYWORDS:

  1. Voltage sag, Voltage swell
  2. DSTATCOM
  3. Distributed generation
  4. FACTS
  5. Feed forward control
  6. Power quality.

 

SOFTWARE: MATLAB/SIMULINK

 

BLOCK DIAGRAM:

Fig. 1: Proposed power system

Proposed micro-grid schema

Fig. 2: Proposed micro-grid schema

 

EXPECTED SIMULATION RESULTS:

Grid side voltage of D-STATCOM

Fig. 3: Grid side voltage of D-STATCOM

Voltage at PCC point

Fig. 4: Voltage at PCC point

DG output voltage without D-STATCOM

Fig. 5: DG output voltage without D-STATCOM

PCC voltage with D-STATCOM

Fig. 6: PCC voltage with D-STATCOM

 Voltage at PCC

Fig. 7: Voltage at PCC

 Voltage at PCC point

Fig. 8: Voltage at PCC point

 

CONCLUSION:

Voltage sag and swell issues are important for energy suppliers, because of the awareness of customers toward the lack of power service quality and its consequences. A D-ST ACOM can be connected at the PCC in order to mitigate these issues. An energy storage battery can be installed at DC-side of the compensator to control voltage magnitude at the PCC. The performance of compensator using a feed-forward PI controller was investigated. Based on the obtained results, the compensator behaves as a good solution for the voltage sag and swell mitigation.

 

REFERENCES:

  • Lineweber and S. McNulty, ” The cost of power disturbances to industrial & digital economy companies,” EPRl, Palo Alto, Calif., 2001.
  • K. Rao, T. Ganeshkumar, and P. Puthra, “Mitigation of Voltage Sag and Voltage Swell by Using D-STATCOM and PWM Switched Autotransformer.”
  • Peterson, “Distributed renewable energy generation impacts on microgrid operation and reliability,” EPRl, Palo Alto, CA: 2002. 1004045.
  • Hatziargyriou, H. Asano, R. Iravani, and C. Marnay, “Microgrids,” Power and Energy Magazine, IEEE, vol. 5, pp. 78- 94,2007.
  • Khodaei, “Provisional Microgrids,” Smart Grid, IEEE Transactions on, vol. 6, pp. 1107 1115,2015.

Electric Spring for Voltage and Power Stability and Power Factor Correction

ABSTRACT:

Electric Spring (ES), a new smart grid technology, has earlier been used for providing voltage and power stability in a weakly regulated/stand-alone renewable energy source powered grid. It has been proposed as a demand side management technique to provide voltage and power regulation. In this paper, a new control scheme is presented for the implementation of the electric spring, in conjunction with non-critical building loads like electric heaters, refrigerators and central air conditioning system. This control scheme would be able to provide power factor correction of the system, voltage support, and power balance for the critical loads, such as the building’s security system, in addition to the existing characteristics of electric spring of voltage and power stability. The proposed control scheme is compared with original ES’s control scheme where only reactive-power is injected. The improvised control scheme opens new avenues for the utilization of the electric spring to a greater extent by providing voltage and power stability and enhancing the power quality in the renewable energy powered microgrids.

KEYWORDS:

  1. Demand Side Management
  2. Electric Spring
  3. Power Quality
  4. Single Phase Inverter
  5. Renewable Energy

 SOFTWARE: MATLAB/SIMULINK

CIRCUIT DIAGRAM:

 

 Fig. 1. Electric Spring in a circuit

 EXPECTED SIMULATION RESULTS:

Fig. 2. Over-voltage, Conventional ES: RMS Line voltage, ES Voltage, and Non-Critical load voltage (ES turned on at t=0.5 sec)

Fig. 3. Over-voltage, Conventional ES: Power Factor of system (ES turned on at t = 0.5 sec)

Fig. 4. Over-voltage, Conventional ES: Active and Reactive power across critical load, non-critical load, and electric spring (ES turned on at t=0.5 sec)

Fig. 5. Under-voltage, Conventional ES: RMS Line voltage, ES Voltage, and Non-Critical load voltage (ES turned on at t=0.5 sec)

Fig. 6. Under-voltage, Conventional ES: Power Factor of system (ES turned on at t = 0.5 sec)

Fig. 7. Under-voltage, Conventional ES: Active and Reactive power across critical load, non-critical load, and electric spring (ES turned on at t=0.5 sec)

Fig.8. Over-voltage, Improvised ES: RMS Line voltage, ES Voltage, and Non-Critical load voltage (ES turned on at t=0.5 sec)

Fig. 9. Over-voltage, Improvised ES: Power Factor of system (ES turned on at t = 0.5 sec)

Fig. 10. Over-voltage, Improvised ES: Active and Reactive power across critical load, non-critical load, and electric spring (ES turned on at t=0.5 sec)

Fig. 11. Under-voltage, Improvised ES: RMS Line voltage, ES Voltage, and Non-Critical load voltage (ES turned on at t=0.5 sec)

Fig. 12. Under-voltage, Improvised ES: Power Factor of system (ES turned on at t = 0.5 sec)

Fig. 13. Under-voltage, Improvised ES: Active and Reactive power across critical load, non-critical load, and electric spring (ES turned on at t=0.5 sec)

CONCLUSION:

In this paper as well as earlier literatures, the Electric Spring was demonstrated as an ingenious solution to the problem of voltage and power instability associated with renewable energy powered grids. Further in this paper, by the implementation of the proposed improvised control scheme it was demonstrated that the improvised Electric Spring (a) maintained line voltage to reference voltage of 230 Volt, (b) maintained constant power to the critical load, and (c) improved overall power factor of the system compared to the conventional ES. Also, the proposed ‘input-voltage-input-current’ control scheme is compared to the conventional ‘input-voltage’ control. It was shown, through simulation and hardware-in-loop emulation, that using a single device voltage and power regulation and power quality improvement can be achieved. It was also shown that the improvised control scheme has merit over the conventional ES with only reactive power injection. Also, it is proposed that electric spring could be embedded in future home appliances [1]. If many non-critical loads in the buildings are equipped with ES, they could provide a reliable and effective solution to voltage and power stability and insitu power factor correction in a renewable energy powered microgrids. It would be a unique demand side management (DSM) solution which could be implemented without any reliance on information and communication technologies.

REFERENCES:

[1] S. Y. Hui, C. K. Lee, and F. F. Wu, “Electric springs – a new smart grid technology,” IEEE Transactions on Smart Grid, vol. 3, no. 3, pp. 1552–1561, Sept 2012.

[2] S. Hui, C. Lee, and F. WU, “Power control circuit and method for stabilizing a power supply,” 2012. [Online]. Available: http://www.google.com/patents/US20120080420

[3] C. K. Lee, N. R. Chaudhuri, B. Chaudhuri, and S. Y. R. Hui, “Droop control of distributed electric springs for stabilizing future power grid,” IEEE Transactions on Smart Grid, vol. 4, no. 3, pp. 1558–1566, Sept 2013.

[4] C. K. Lee, B. Chaudhuri, and S. Y. Hui, “Hardware and control implementation of electric springs for stabilizing future smart grid with intermittent renewable energy sources,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 1, no. 1, pp. 18–27, March 2013.

[5] C. K. Lee, K. L. Cheng, and W. M. Ng, “Load characterisation of electric spring,” in 2013 IEEE Energy Conversion Congress and Exposition, Sept 2013, pp. 4665–4670.

 

 

Simulation and Control of Solar Wind Hybrid Renewable Power System

ABSTRACT:

The sun and wind based generation are well thoroughly considered to be alternate source of green power generation which can mitigate the power demand issues. This paper introduces a standalone hybrid power generation system consisting of solar and permanent magnet synchronous generator (PMSG) wind power sources and a AC load. A supervisory control unit, designed to execute maximum power point tracking (MPPT), is introduced to maximize the simultaneous energy harvesting from overall power generation under different climatic conditions. Two contingencies are considered and categorized according to the power generation from each energy source, and the load requirement. In PV system Perturb & Observe (P&O) algorithm is used as control logic for the Maximum Power Point Tracking (MPPT) controller and Hill Climb Search (HCS) algorithm is used as MPPT control logic for the Wind power system in order to maximizing the power generated. The Fuzzy logic control scheme of the inverter is intended to keep the load voltage and frequency of the AC supply at constant level regardless of progress in natural conditions and burden. A Simulink model of the proposed Hybrid system with the MPPT controlled Boost converters and Voltage regulated Inverter for stand-alone application is developed in MATLAB.

KEYWORDS:

  1. Renewable energy
  2. Solar
  3. PMSG Wind
  4. Fuzzy controller
  5. P&O

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:

Figure 1. Block diagram of PV-Wind hybrid system

EXPECTED SIMULATION RESULTS:

Figure 2. PV changing irradiation level

Figure 3. Output voltage for PV changing irradiation level

  Figure 4. Wind speed changing level

Figure 5. Output current wind

Figure 6. Output Voltage wind

Case 1 : PI voltage regulated inverter

Figure 7. Output voltage for inverter

Figure 8. Power generation of the hybrid system under varying wind speed and irradiation

Case 2 : fuzzy logic voltage regulated inverter

Figure 9. Output voltage for inverter

Figure 10. Power generation of the hybrid system under varying wind speed and irradiation

 CONCLUSION:

Nature has provided ample opportunities to mankind to make best use of its resources and still maintain its beauty. In this context, the proposed hybrid PV-wind system provides an elegant integration of the wind turbine and solar PV to extract optimum energy from the two sources. It yields a compact converter system, while incurring reduced cost.

The proposed scheme of wind–solar hybrid system considerably improves the performance of the WECS in terms of enhanced generation capability. The solar PV augmentation of appropriate capacity with minimum battery storage facility provides solution for power generation issues during low wind speed situations.

FLC voltage regulated inverter is more power efficiency and reliable compared to the PI voltage regulated inverter, in this context FLC improve the effect of the MPPT algorithm in the power generation system of which sources solar and wind power generation systems.

REFERENCES:

[1] Natsheh, E.M.; Albarbar, A.; Yazdani, J., “Modeling and control for smart grid integration of solar/wind energy conversion system,” 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies (ISGT Europe),pp.1-8, 5-7 Dec. 2011.

[2] Bagen; Billinton, R., “Evaluation of Different Operating Strategies in Small Stand-Alone Power Systems,” IEEE Transactions on Energy Conversion, vol.20, no.3, pp. 654-660, Sept. 2005

[3] S. M. Shaahid and M. A. Elhadidy, “Opportunities for utilization of stand-alone hybrid (photovoltaic + diesel + battery) power systems in hot climates,” Renewable Energy, vol. 28, no. 11, pp. 1741–1753, 2003.

[4] Goel, P.K.; Singh, B.; Murthy, S.S.; Kishore, N., “Autonomous hybrid system using PMSGs for hydro and wind power generation,” 35th Annual Conference of IEEE Industrial Electronics, 2009. IECON ’09, pp.255,260, 3-5 Nov. 2009.

[5] Foster, R., M. Ghassemi, and A. Cota, Solar energy: renewable energy and the environment. 2010, Boca Raton: CRC Press.