Solar Photovoltaic Powered Sailing Boat Using Buck Converter

ABSTRACT

 The main objective of this paper is to establish technical and economical aspects of the application of stand-alone photovoltaic (PV) system in sailing boat using a buck converter in order to enhance the power generation and also to minimize the cost. Performance and control of dc-dc converter, suitable for photovoltaic (PV) applications, is presented here. A buck converter is employed here which extracts complete power from the PV source and feeds into the dc load. The power, which is fed into the load, is sufficient to drive a boat. With the help of matlab simulink software PV module and buck model has been designed and simulated and also compared with theoretical predictions.

KEYWORDS

  1. Buck Converter
  2. Ideal Switch
  3. Matlab Simulink
  4. PV
  5. Solar Sailing Boat

 SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM

Figure 1. Schematic Diagram of PV powered Sailing Boat

 EXPECTED SIMULATION RESULTS

 Figure 2. Simulation result of maximum voltage, current and power in PV array

Figure 3. Simulation result of Buck converter

Figure 4. Simulation result of PV with Buck

 CONCLUSION

Here proposed a solar PV powered sailing boat using buck converter. And tested the effectiveness of the proposed control scheme. This is a new and innovative application which is fully environmental friendly and is almost pollution less. As the upper portion of the boat is unused, solar panels are implemented in that portion quite easily, without requiring extra space. Fuel cost is not required in day time due to the presence of sunlight. lastly, energy pay back period will be lesser than diesel run boat.

 REFERENCES

 [1] P V or  ob i e  v, Y u. V or ob i  e v. Automatic Sun Tracking Solar Electric Systems for Applications on Transport. 7th International Conference on Electrical Engineering, Computing Science and Automatic Control. 2010.

[2] Nob u  y u l  u K  as a, Ta  k  ah i k o Ii d a, Hide o I w a motto. An invert er using buck-boost type chopper circuits for popular small-scale photo voltaic power system. IEEE. 1999.

[3] Pen g Zhang, Wen yuan Li, S her win Li, Yang Wang, Wei dong Xi a o. Reliability assessment of photo voltaic power systems: Review of current status and future perspectives. Applied Energy. 2013; 104(2013): 822–833,

[4] M Nag a o, H Ho r i k a w a, K Ha r a d a. Photo voltaic System using Buck-Boost PW  M Invert er. Trans. of IE E J. 1994; ll 4(D): 885-892.

[5] A Z e g a o u i, M Ail l e r i e, P Pet it, JP S a wick i, JP Charles, AW Be la r bi. Dynamic behavior of P V generator trackers under irradiation and temperature changes. Solar Energy. 2011; 85(2011): 2953–2964.

Modeling, Implementation and Performance Analysis of a Grid-Connected Photovoltaic/Wind Hybrid Power System

ABSTRACT:

This paper investigates dynamic modeling, design and control strategy of a grid-connected photovoltaic (PV)/wind hybrid power system. The hybrid power system consists of PV station and wind farm that are integrated through main AC-bus to enhance the system performance. The Maximum Power Point Tracking (MPPT) technique is applied to both PV station and wind farm to extract the maximum power from hybrid power system during variation of the environmental conditions. The modeling and simulation of hybrid power system have been implemented using Matlab/Simulink software. The effectiveness of the MPPT technique and control strategy for the hybrid power system is evaluated during different environmental conditions such as the variations of solar irradiance and wind speed. The simulation results prove the effectiveness of the MPPT technique in extraction the maximum power from hybrid power system during variation of the environmental conditions. Moreover, the hybrid power system operates at unity power factor since the injected current to the electrical grid is in phase with the grid voltage. In addition, the control strategy successfully maintains the grid voltage constant irrespective of the variations of environmental conditions and the injected power from the hybrid power system.

KEYWORDS:

  1. PV
  2. Wind
  3. Hybrid system
  4. Wind turbine
  5. DFIG
  6. MPPT control

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:

Fig. 1. The system configuration of PV/wind hybrid power system.

 EXPECTED SIMULATION RESULTS:

(a) Solar Irradiance.

(b) PV array voltage.

(c) PV array current.

(d) A derivative of power with respect to voltage (dPpv/dVpv).

Fig. 2. Performance of PV array during the variation of solar irradiance.

(a) PV DC-link Voltage.

(b) d-q axis components of injected current from PV station.

(c) Injected active and reactive power from PV station.

(d) Grid voltage and injected current from PV station.

(e) The power factor of the inverter.

(f) Injected current from PV station.

Fig. 3. Performance of PV station during variation of the solar irradiance.

(a) Wind speed profile.

(b) The mechanical torque of wind turbine.

(c) The DC-bus voltage of DFIG.

(d) Injected active and reactive power from the wind farm.

(e) The power factor of the wind farm.

(f) Injected current from the wind farm.

Fig. 4. Performance of wind farm during variation of the wind speed.

(a) Power flow between PV station, wind farm, and hybrid power system.

(b) Injected active and reactive power from the hybrid system.

(c) PCC-bus voltage.

Fig. 5. Performance of hybrid power system at PCC-bus.

 CONCLUSION:

In this paper, a detailed dynamic modeling, design and control strategy of a grid-connected PV/wind hybrid power system has been successfully investigated. The hybrid power system consists of PV station of 1MW rating and a wind farm of 9 MW rating that are integrated through main AC-bus to inject the generated power and enhance the system performance. The incremental conductance MPPT technique is applied for the PV station to extract the maximum power during variation of the solar irradiance. On the other hand, modified MPPT technique based on mechanical power measurement is implemented to capture the maximum power from wind farm during variation of the wind speed. The effectiveness of the MPPT techniques and control strategy for the hybrid power system is evaluated during different environmental conditions such as the variations of solar irradiance and wind speed. The simulation results have proven the validity of the MPPT techniques in extraction the maximum power from hybrid power system during variation of the environmental conditions. Moreover, the hybrid power system successfully operates at unity power factor since the injected reactive power from hybrid power system is equal to zero. Furthermore, the control strategy successfully maintains the grid voltage constant regardless of the variations of environmental conditions and the injected power from the hybrid power system.

REFERENCES:

[1] H. Laabidi and A. Mami, “Grid connected Wind-Photovoltaic hybrid system,” in 2015 5th International Youth Conference on Energy (IYCE), pp. 1-8,2015.

[2] A. B. Oskouei, M. R. Banaei, and M. Sabahi, “Hybrid PV/wind system with quinary asymmetric inverter without increasing DC-link number,” Ain Shams Engineering Journal, vol. 7, pp. 579-592, 2016.

[3] R. Benadli and A. Sellami, “Sliding mode control of a photovoltaic-wind hybrid system,” in 2014 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), pp. 1-8, 2014.

[4] A. Parida and D. Chatterjee, “Cogeneration topology for wind energy conversion system using doubly-fed induction generator,” IET Power Electronics, vol. 9, pp. 1406-1415, 2016.

[5] B. Singh, S. K. Aggarwal, and T. C. Kandpal, “Performance of wind energy conversion system using a doubly fed induction generator for maximum power point tracking,” in Industry Applications Society Annual Meeting (IAS), 2010 IEEE, 2010, pp. 1-7.

 

A Synchronous Generator Based Diesel-PV Hybrid Micro-grid with Power Quality Controller

 

ABSTRACT:

This paper presents an isolated microgrid, with synchronous generator(SG) based diesel generation (DG) system in combination with solar photo-voltaic(PV). The DG supplies power to the load directly, and a battery supported voltage source converter (VSC) is connected in shunt at point of common coupling (PCC). The PV array is connected at DC-link of the VSC through a boost converter. A high order optimization based adaptive filter control scheme is used for maintaining the quality of PCC voltages and source currents. This controller makes the waveform free of distortion, removes errors due to unbalances, corrects the power factor and makes the source current smooth sinusoidal, irrespective of the nature of load. MATLAB/Simulink based simulation results demonstrate satisfactory performance of the given system.

KEYWORDS:

  1. Battery
  2. Diesel generator
  3. LMF
  4. Power quality
  5. PV

SOFTWARE: MATLAB/SIMULINK

CIRCUIT DIAGRAM:

 

 

Fig. 1 System model

 EXPECTED SIMULATION RESULTS:

 

 Fig. 2 Steady State Response of DG-PV micro-grid

Fig. 3 Dynamic Response of DG-PV micro-grid

CONCLUSION:

An isolated SG based DG and PV hybrid micro-grid has been presented here, with a battery suppported VSC connected at PCC. Three-phase adaptive control is used for power quality improvement through VSC. The given system and control have been simulated in MATLAB/Simulink environment and results demonstrate their satisfactory performance in both steady state and dynamic conditions.

REFERENCES:

[1] G. Shafiullah et al., “Meeting energy demand and global warming by integrating renewable energy into the grid,” in 22nd Australasian Universities Power Engg. Conf. (AUPEC), pp. 1–7, Bali, 2012.

[2] M. Milligan et al., “Alternatives No More: Wind and Solar Power Are Mainstays of a Clean, Reliable, Affordable Grid,” IEEE Power & Energy Mag., vol. 13, no. 6, pp. 78–87, Nov.-Dec. 2015.

[3] L. Partain and L. Fraas, “Displacing California’s coal and nuclear generation with solar PV and wind by 2022 using vehicle-to-grid energy storage,” IEEE Photovoltaic Specialist Conf., pp. 1–6, LA, 2015.

[4] Daniel E. Olivares et al., “Trends in Microgrid Control,” in 2015 IEEE Trans. Smart Grid, vol. 5, no.4, pp. 1905–1919, July, 2014.

[5] Z. Zavody, “The grid challenges for renewable energy An overview and some priorities,” IET Seminar on Integrating Renewable Energy to the Grid, pp. 1–24, London 2014.

Distributed Generation System Control Strategies in Microgrid Operation

 

ABSTRACT:

Control strategies of distributed generation (DG) are investigated for different combination of DG and storage units in a microgrid. This paper develops a detailed photovoltaic (PV) array model with maximum power point tracking (MPPT) control, and presents real and reactive power (PQ) control and droop control for DG system for microgrid operation. In grid-connected mode, PQ control is developed by controlling the active and reactive power output of DGs in accordance with assigned references. In islanded mode, DGs are controlled by droop control. Droop control implements power reallocation between DGs based on predefined droop characteristics whenever load changes or the microgrid is connected/disconnected to the grid, while the microgrid voltage and frequency is maintained at appropriate levels. This paper presents results from a test microgrid system consisting of a voltage source converter (VSC) interfacing with a DG, a PV array with MPPT, and changeable loads. The control strategies are tested via two scenarios: the first one is to switch between grid-connected mode and islanded mode and the second one is to change loads in islanded mode. Through voltage, frequency, and power characteristics in the simulation under such two scenarios, the proposed control strategies can be demonstrated to work properly and effectively.

KEYWORDS:

  1. Distributed generation
  2. PV
  3. Microgrid
  4. Droop control
  5. PQ control

 SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:

image001

Fig. 1. Schematic of the microgrid.

CONTROL SYSTEM:

image002

Fig. 2. Schematic of the PQ control.

image003

Fig. 3. Schematic of the droop control.

 EXPECTED SIMULATION RESULTS:

 image004

Fig. 4. PQ control under grid-connected mode.

image005

Fig. 5. Droop control for switching modes.

image006

Fig. 6. Droop control for varying load.

 

CONCLUSION:

In this paper a detailed PV model with MPPT, and PQ and droop controllers is developed for inverter interfaced DGs. The use of PQ control ensures that DGs can generate certain power in accordance with real and reactive power references. Droop controller is developed to ensure the quick dynamic frequency response and proper power sharing between DGs when a forced isolation occurs or load changes. Compared to pure V/f control and master-slave control, the proposed control strategies which have the ability to operate without any online signal communication between DGs make the system operation cost-effective and fast respond to load changes. The simulation results obtained shows that the proposed controller is effective in performing real and reactive power tracking, voltage control and power sharing during both grid-connected mode and islanded mode. To fully represent the complexity of the microgrid, future work will include the development of hierarchical controllers for a microgrid consisting of several DGs and energy storage system. The function of primary controller is to assign optimal power reference to each DG to match load balances and the secondary controllers are designed to control local voltage and frequency.

REFERENCES:

Barsali, S., Ceraolo M., Pelacchi, P., and Poli, D. (2002). Control techniques of dispersed generators to improve the continuity of electricity supply. IEEE Conf., Power Engineering Society, vol.2, pp.789-794.

Cai, N., and Mitra J. (2010). A decentralized control architecture for a microgrid with power electronic interfaces. IEEE conf., North American Power Symposium, pp. 1-8.

Chen, X., Wang, Y.H., and Wang, Y.C. (2013). A novel seamless transferring control method for microgrid based on master-slave configuration. IEEE Conf., ECCE Asia, pp. 351-357.

Cho, C. H., Jeon, J.H., Kim, J.Y., Kwon, S., Park, K., and Kim, S. (2011). Active synchronizing control a microgrid. IEEE Trans., Power Electron., vol. 26, no. 12, pp. 3707-3719

Choi, J.W. and Sul, S.K. (1998). Fast current controller in three-phase AC/DC boost converter using d-q axis crosscoupling. IEEE Trans., Power Electron., vol.13, no.1, pp. 179-185.