A Fuzzy Logic Control Method for MPPT of PV Systems

ABSTRACT:  

Maximum power point trackers are so important in photovoltaic systems to increase their efficiency. Many methods have been proposed to achieve the maximum power that the PV modules are capable of producing under different weather conditions. This paper proposed an intelligent method for maximum power point tracking based on fuzzy logic controller.  The system consists of a photovoltaic solar module connected to a DC-DC Buck-boost converter. The system has been experienced under disturbance in the photovoltaic temperature and irradiation level. The simulation results show that the proposed maximum power tracker could track the maximum power accurately and successfully in all condition tested. Comparison of different performance parameters such as: tracking efficiency and response time of the system shows that the proposed method gives higher efficiency and better performance than the conventional perturbation and observation method.

 SOFTWARE: MATLAB/SIMULINK

 CIRCUIT DIAGRAM:

Fig. 1: System used for simulation.

 EXPECTED SIMULATION RESULTS:

 Fig. 2: case 1: changing the solar radiation

Fig. 3: Case 1: performance of FLC method

Fig. 4: Case I: performance of P&O method

Fig, 5: Case 2: changing the solar radiation

Fig, 6: Case 2: performance of FLC method

Fig, 7: Case 2: performance of P&O method

Fig, 8: Changing the temperature

Fig, 9: Performance of FLC method

Fig, 10: Performance of P&O method

CONCLUSION:

 Photovoltaic model using Matlab/STMULTNK and design of appropriate DC-DC buck-boost converter with a maximum power point tracking facility are presented in this paper. A new method for MPPT based fuzzy logic controller is presented and compared with the conventional P&O MPPT method. The models are tested under disturbance in both solar radiation and photovoltaic temperature. Simulation results show that the proposed method effectively tracks the maximum power point under different ambient conditions.The oscillation around MPP is decreased and the response is faster in compared with the conventional methods. Comparing the tracking efficiency of both methods indicates that the proposed method has a higher efficiency than the conventional P&O MPPT method.

 REFERENCES:

[1] Jancarle L. Dos Santos, Fernando L. M. Antunes and Anis Chehab, “A Maximum Power Point Tracker for PV Systems Using a High Performance Boost Converter”, Solar Energy, Issue 7, Vol. 80, pp. 772- 778,2005.

[2] Ting-Chung Yu and Tang-Shiuan Chien, “Analysis and Simulation of Characteristics and Maximum Power Point Tracking for Photovoltaic Systems”, Conference,P prpo.c 1e3ed3i9n g- s1 3o4f4 ,PT aoiwpeeri, 2E0l0e9c.t ronics and Drive Systems

[3] Roberto Faranda, Sonia Leva, “Energy Comparison of MPPT techniques for PV Systems”, Wseas Transctions on Power System, Issue 6, Vol. 3, pp. 446-455, June 2008.

[4] D. P. Hohm and M. E. Ropp, “Comparative Study of Maximum Power Point Tracking Algorithms using an experimental, programmable, maximum power point tracking test bed”,P roceedings of Photovoltaic Specialists Conference ,pp. 1699 – 1702, USA,2000.

[5] Trishan Esram and Patrick 1. Chapman, “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques”, Energy ConverSion, Issue 2, Vol. 22, pp. 439 – 449, May 2007.

Intelligent Maximum Power Tracking and Inverter Hysteresis Current Control of Grid-connected PV Systems

 ABSTRACT:

This paper proposes a maximum power point tracking scheme using neural networks for a grid connected photovoltaic system. The system is composed of a photovoltaic array, a boost converter, a three phase inverter and grid. The neural network proposed can predict the required terminal voltage of the array in order to obtain maximum power. The duty cycle is calculated and the boost converter switches are controlled. Hysteresis current technique is applied on the three phase inverter so that the output voltage of the converter remains constant at any required set point. The complete system is simulated using MATLAB/SIMULINK software under sudden weather conditions changes. Results show accurate and fast response of the converter and inverter control and which leads to fast maximum power point tracking.

 

KEYWORDS:

  1. Neural networks
  2. Grid connected
  3. Maximum power point tracking
  4. Photovoltaic system
  5. Hysteresis control.

 

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:

Fig. 1. Block diagram of the grid connected photovoltaic system

 

EXPECTED SIMULATION RESULTS:

 

Fig. 2. Power-voltage curves for the two cases

Fig. 3. (a) Temperature, (b) Irradiance, (c) Output power of the array, (d)Terminal voltage of the array.

Fig. 4. (a) Reference voltage of inverter control, (b) Voltage at inverter’s DC side.

 

CONCLUSION:

This paper presents a complete control scheme for a grid connected photovoltaic system. The whole system was simulated and the controllers were tested. The proposed maximum power point tracking control using neural networks maintains accurately the maximum power and shows fast dynamic response against sudden environmental condition changes or disturbances. Further research can be carried out in the near future to implement a physical model of the system and to compare the applied scheme with other conventional ones.

 

REFERENCES:

  • G. Villalva, J. R. Gazoli and E. Ruppert F. “Analysis and simulation of the P&O MPPT algorithm using alinearized array model”. Power electronics conference, 2009, Brazil.
  • Safri and S. Mekhilef. “Incremental conductance MPPT method for PV systems”. Electrical and Computer Engineering (CCECE). 2011. Canada.
  • I. Sulaiman, T.K. Abdul Rahman, I.Musirin and S.Shaari. “Optimizing Three-layer Neural Network Model for Grid-Connected Photovoltaic output prediction”. Conference on innovative technologies in intelligent systems and industrial applications.2009.
  • Subiyanto, A.Mohamed and M.A.Hannan. “Maximum Power Point Tracking in Grid Connected PV System using A Novel Fuzzy Logic Controller”. IEEE student conference on research and development, 2009.
  • Trishan Esram and Patrick L. Chapman. “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques. “ IEEE Transactions on energy conversion, Vol.22, NO. 2, 2007.

A Fuzzy Logic Control Method for MPPT of PV Systems

ABSTRACT:

Maximum power point trackers are so important in photovoltaic systems to increase their efficiency. Many methods have been proposed to achieve the maximum power that the PV modules are capable of producing under different weather conditions. This paper proposed an intelligent method for maximum power point tracking based on fuzzy logic controller. The system consists of a photovoltaic solar module connected to a DC-DC Buck-boost converter. The system has been experienced under disturbance in the photovoltaic temperature and irradiation level. The simulation results show that the proposed maximum power tracker could track the maximum power accurately and successfully in all condition tested. Comparison of different performance parameters such as: tracking efficiency and response time of the system shows that the proposed method gives higher efficiency and better performance than the conventional perturbation and observation method.

 SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:

Fig. 1. Block diagram of the stand-alone PV system

EXPECTED SIMULATION RESULTS:

Fig. 2: case 1: changing the solar radiation

Fig. 3: Case 1: performance of FLC method

 

Fig. 4: Case I: performance of P&O method

Fig, 5: Case 2: changing the solar radiation

Fig, 6: Case 2: performance of FLC method

Fig, 7: Case 2: performance of P&O method

Fig, 8: Changing the temperature

Fig, 9: Performance of FLC method

Fig, 10: Performance of P&O method

 CONCLUSION:

 Photovoltaic model using Matlab/STMULTNK and design of appropriate DC-DC buck-boost converter with a maximum power point tracking facility are presented in this paper. A new method for MPPT based fuzzy logic controller is presented and compared with the conventional P&O MPPT method. The models are tested under disturbance in both solar radiation and photovoltaic temperature. Simulation results show that the proposed method effectively tracks the maximum power point under different ambient conditions. The oscillation around MPP is decreased and the response is faster in compared with the conventional methods. Comparing the tracking efficiency of both methods indicates that the proposed method has a higher efficiency than the conventional P&O MPPT method.

 REFERENCES:

[1] Jancarle L. Dos Santos, Fernando L. M. Antunes and Anis Chehab, “A Maximum Power Point Tracker for PV Systems Using a High Performance Boost Converter”, Solar Energy, Issue 7, Vol. 80, pp. 772- 778,2005.

[2] Ting-Chung Yu and Tang-Shiuan Chien, “Analysis and Simulation of Characteristics and Maximum Power Point Tracking for Photovoltaic Systems”, Conference,P prpo.c 1e3ed3i9n g- s1 3o4f4 ,PT aoiwpeeri, 2E0l0e9c.t ronics and Drive Systems

[3] Roberto Faranda, Sonia Leva, “Energy Comparison of MPPT techniques for PV Systems”, Wseas Transctions on Power System, Issue 6, Vol. 3, pp. 446-455, June 2008.

[4] D. P. Hohm and M. E. Ropp, “Comparative Study of Maximum Power Point Tracking Algorithms using an experimental, programmable, maximum power point tracking test bed”,P roceedings of Photovoltaic Specialists Conference ,pp. 1699 – 1702, USA,2000.

[5] Trishan Esram and Patrick 1. Chapman, “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques”, Energy ConverSion, Issue 2, Vol. 22, pp. 439 – 449, May 2007.

MPPT Schemes for PV System under Normal and Partial Shading Condition: A Review

ABSTRACT:

The photovoltaic system is one of the renewable energy device, which directly converts solar radiation into electricity. The I-V characteristics of PV system are nonlinear in nature and under variable Irradiance and temperature, PV system has a single operating point where the power output is maximum, known as Maximum Power Point (MPP) and the point varies on changes in atmospheric conditions and electrical load. Maximum Power Point Tracker (MPPT) is used to track MPP of solar PV system for maximum efficiency operation. The various MPPT techniques together with implementation are reported in literature. In order to choose the best technique based upon the requirements, comprehensive and comparative study should be available. The aim of this paper is to present a comprehensive review of various MPPT techniques for uniform insolation and partial shading conditions. Furthermore, the comparison of practically accepted and widely used techniques has been made based on features, such as control strategy, type of circuitry, number of control variables and cost. This review work provides a quick analysis and design help for PV systems.

KEYWORDS:

1.      Renewable Energy System

2.       Solar Photovoltaic

3.       Solar Power Conversion

4.       Maximum Power Point Tracking

5.       Partial Shading

6.      Global MPPT

 SOFTWARE:MATLAB/SIMULINK

 

BLOCK DIAGRAM:

 

 Fig. 1 Current feedback methodology for MPPT tracking

 EXPECTED SIMULATION RESULTS:

 

 Fig. 2 Irradiance pattern for the testing of MPPT controller

Fig. 3 Power output response for Voltage Fraction MPPT

 

Fig. 4 Power output response for the P&O and INC controller

Fig. 5 Power output response for Fuzzy Logic MPPT controller

Fig. 6 The P-V curve for the demonstration of Power slope technique algorithm

Fig. 7 The output power of PV array for the Power Curve Scanning technique

Fig. 8 The output power of PV array for the modified Power Slope Detection GMPPT technique

CONCLUSION:

The prominent techniques of MPPT are discussed in this paper. It may be used as tutorial material on solar MPPT. Also, an attempt has been made to describe the important GMPPT techniques with sufficient details. A comprehensive comparative analysis has been contributed in this paper considering performance, cost, complexity of circuit and other parameters of MPPT. The results of this analysis will be helpful for proper selection of MPPT method. The generated power performance through few MPPT controllers has been illustrated with the help of simulation excercise. This also provides better understanding through numerical comparison. This review work has also presented a brief analysis and comparison of MPPT techniques for partial shading conditions. This paper may be useful for solar PV system manufacturer and solar inverter designer.

 REFERENCES:

Abdourraziq, S., & El. Bachtiri Rachid (2014) A perturb and observe method using fuzzy logic control for PV pumping system. International Conference on Multimedia Computation and Systems, Marrakech, 1608-1612.

Adly, M., El-Sherif, H., & Ibrahim, M. (2011) Maximum Power Point Tracker for a PV cell using a fuzzy agent adapted by the Fractional open circuit voltage technique. IEEE International Conference on Fuzzy System, Taipei, 1918-1922.

Ahmad, J. (2010) A fractional open circuit voltage based maximum power point tracker for photovoltaic arrays. International Conference on Soft Technology and Engineering, San Juan, 247-250.

Ahmed, N.A., and Miyatake, M. (2008) A novel maximum power point tracking for photovoltaic applications under partially shaded insolation conditions. Electric Power System Research, 78, 777-784.

Altas, I.H., & Sharaf, A.M. (1996) A novel on-line MPP search algorithm for PV arrays. IEEE Transactions on Energy Conversions, 11 (4), 748-754.