Single-phase solar PV system with battery and exchange of power in grid-connected and standalone modes


A grid tied photovoltaic (PV) power conversion topology is presented in this study with a novel scheme of resynchronization to the grid. This scheme serves the purpose of supplying continuous power to the load along with feeding power to the grid. The control approach helps in mitigation of harmonics and improving the power quality while extracting the optimum power from the PV array. Depending on the availability of grid voltage, the proposed configuration is controlled using three approaches, defined as grid current control, Point of Common Coupling (PCC) voltage control and intentional islanding with re-synchronisation.

A simple proportional integral controller manages the grid current, load voltage, battery current and DC Direct Current (DC) link voltage within these modes. Moreover, a control scheme for quick and smooth transitions among the modes is described. The robustness of the system under erratic behaviour of solar insolation, load power and disturbances in grid supply makes it a suitable choice for a residential application. The control, design and simulation results are presented to demonstrate the satisfactory operation of the proposed system.



 Fig. 1 Proposed system topology


Fig. 2 Performance of the system under grid isolation

GCC to PVC, (b) Harmonic spectrum of grid current (ig), (c) Harmonic spectrum of load voltage (vL)

 Fig. 3 Performance of the system under grid reconnection

(a) Mode change from PVC to IIRS, (b) Grid voltage (vg) vs. load voltage (vL) during

intentional islanding

Fig. 4 Performance of the system for insolation change from 1000 W/m2

to 500/m2


The proposed scheme has combined the solar PV power generating unit to single-phase grid with a unique feature of resynchronization of grid to the system after overcoming the grid failures. The ability of the system to generate maximum power for varying insolation, feeding active power to the grid as well as load and store/extract power to/from the battery has been validated by the dynamic performance. This helps in increasing the efficiency of the system.

The scheme has utilised minimum number of switches resulting in lower switching losses. The VSC has the ability to diminish the switching harmonics in grid current and load voltages resulting in <5% THD as demanded by the IEEE 519 standard. The system has ability to re-synchronise with the grid within five cycles of grid voltage for any phase difference. This helps in achieving the fast time response of the system, thus making it a suitable choice for residential applications. The obtained results have authenticated the robustness and feasibility of the proposed system under various disturbances.


[1] Zheng, H., Li, S., Bao, K., et al.: ‘Comparative study of maximum power point tracking control strategies for solar PV systems’. IEEE Conf. on Transmission, Distribution and Exposition, May 2012, pp. 1–8

[2] Weihang, Y., Jianhui, W., Wenzhong, G., et al.: ‘A MPPT algorithm based on extremum seeking with variable gain for microinverters in microgrid’. IEEE Conf. on Control (CCC), July 2015, pp. 7939–7944

[3] Zhang, Q., Hu, C., Chen, L., et al.: ‘A center point iteration MPPT method with application on the frequency-modulated LLC microinverter’, IEEE Trans. Power Electron., 2014, 29, (3), pp. 1262–1274

[4] Li, Q., Wolfs, P.: ‘A review of the single phase photovoltaic module integrated converter topologies with three different DC link configurations’, IEEE Trans. Power Electron., 2008, 23, (3), pp. 1320–1333

[5] Gloire, N., Lei, D., Xiaozhong, L., et al.: ‘Single phase grid-connected PV inverter applying a boost coupled inductor’. IEEE Conf. on Transportation Electrification (ITEC Asia-Pacific), August–September 2014, pp. 1–5

Induction Motor Drive For PV Water PumpingWith Reduced Sensors


 This study presents the reduced sensors based standalone solar photovoltaic (PV) energised water pumping. The system is configured to reduce both cost and complexity with simultaneous assurance of optimum power utilisation of PV array. The proposed system consists of an induction motor-operated water pump, controlled by modified direct torque control. The PV array is connected to the DC link through a DC–DC boost converter to provide maximum power point tracking (MPPT) control and DC-link voltage is maintained by a three-phase voltage-source inverter. The estimation of motor speed eliminates the use of tacho generator/encoder and makes the system cheaper and robust. Moreover, an attempt is made to reduce the number of current sensors and voltage sensors in the system. The proposed system constitutes only one current sensor and only one voltage sensor used for MPPT as well as for the phase voltage estimation and for the phase currents’ reconstruction. Parameters adaptation makes the system stable and insensitive toward parameters variation. Both simulation and experimental results on the developed prototype in the laboratory validate the suitability of proposed system.



Fig. 1 circuit diagram (a) Proposed system,


Fig. 2 Performance indices (a) PV array during starting to steady state at 1000 W/m2, (b) IMD indices at 1000 W/m2

 Fig. 3 Performance indices during insolation change 1000–500 W/m2

(a) PV array, (b) IMD indices 500–1000 W/m2, (c) PV array (d) IMD indices

Fig. 4 Adaptation mechanism

(a) Rs adaptation at rated speed and insolation, (b) τr Adaptation at rated speed and rated insolation

Fig. 5 Performance indices of the drive

(a) Starting at 1000 W/m2, (b) Starting at 500 W/m2, (c) Steady state at 1000 W/m2,

(d) Steady state at 500 W/m2

Fig. 6 Dynamic performance of the drive under variable insolation

(a) 1000–500 W/m2, (b) 500–1000 W/m2, (c) Intermediate speed signals at 1000–500

W/m2, (d) Intermediate speed signals at 500–1000 W/m2

Fig. 7 Intermediate signals in terms of

(a) Te* and Te at 1000–500 W/m2, (b) 500–1000 W/m2, (c) Reference stationary

components of flux and estimated flux at 1000–500 W/m2, (d) 500–1000 W/m2

Fig. 8 Reconstructed and measured current waveforms of phases a and b

at (a) Starting performance at 1000 W/m2, (b) 1000 W/m2, (c) 500 W/m2, (d) Boost

converter parameters at 1000 W/m2


The modelling and simulation of the proposed system has been carried out in MATLAB/Simulink and its suitability is validated experimentally on a developed prototype in the laboratory. The system comprises of one voltage sensor and one current sensor, which are sufficient for the proper operation of the proposed system. The motor-drive system performs satisfactorily during starting at various insolations, steady-state, dynamic conditions represented by changing insolation. The speed estimation has been carried out by flux components in stationary frame of reference. The flux and torque are controlled separately. Therefore, successful observation of the proposed system with satisfactory performance has been achieved without the mechanical sensors. This topology improves the stability of the system. The stability of the system at rated condition toward stator resistance variation is shown by Nyquist stability curve and the stability toward the rotor-time constant perturbation is shown by Popov’s criteria. The DTC of an induction motor with fixed frequency switching technique reduces the torque ripple. The line voltages are estimated from this DC-link voltage. Moreover, the reconstruction of three-phase stator currents has been successfully carried out from DC-link current. Simulation results are well validated by test results. Owing to the virtues of simple structure, control, cost-effectiveness, fairly good efficiency and compactness, it is inferred that the suitability of the system can be judged by deploying it in the field.


[1] Masters, G.M.: ‘Renewable and efficient electric power systems’ (IEEE Press,Wiley and Sons, Inc., Hoboken, New Jersey, 2013), pp. 445–452

[2] Foster, R., Ghassemi, M., Cota, M.: ‘Solar energy: renewable energy and the environment’ (CRC Press, Taylor and Francis Group, Inc., Boca Raton, Florida, 2010)

[3] Parvathy, S., Vivek, A.: ‘A photovoltaic water pumping system with high efficiency and high lifetime’. Int. Conf. Advancements in Power and Energy (TAP Energy), Kollam, India, 24–26 June 2015, pp. 489–493

[4] Shafiullah, G.M., Amanullah, M.T., Shawkat Ali, A.B.M., et al.: ‘Smart grids: opportunities, developments and trends’ (Springer, London, UK, 2013)

[5] Sontake, V.C., Kalamkar, V.R.: ‘Solar photovoltaic water pumping system – a comprehensive review’, Renew. Sustain. Energy Rev., 2016, 59, pp. 1038– 1067

Single Stage Solar PV Fed Brushless DC Motor Driven Water Pump



In order to optimize the solar photovoltaic (PV) generated power using a maximum power point tracking (MPPT) technique, a DC-DC conversion stage is usually required in solar PV fed water pumping which is driven by a brushless DC (BLDC) motor. This power conversion stage leads to an increased cost, size, complexity and reduced efficiency. As a unique solution, this work addresses a single stage solar PV energy conversion system feeding a BLDC motor-pump, which eliminates the DC-DC conversion stage. A simple control technique capable of operating the solar PV array at its peak power using a common voltage source inverter (VSI), is proposed for BLDC motor control. The proposed control eliminates the BLDC motor phase current sensors. No supplementary control is associated for the speed control of motor-pump and its soft start. The speed is controlled through the optimum power of solar PV array. The suitability of proposed system is manifested through its performance evaluation using MATLAB/Simulink based simulated results and experimental validation on a developed prototype, under the practical operating conditions.


  1. MPPT
  2. Solar PV array
  3. BLDC motor
  4. Water pump
  5. VSI
  6. Soft starting
  7. Speed control




Fig.1 Proposed water pumping based on a single stage solar PV energy conversion system.


 Fig.2 Steady state and starting performance of (a) PV array and (b) motor pump, of proposed system at 1 kW/m2.

Fig.3 Steady state and starting response of (a) PV array and (b) motor-pump, of proposed system at 200 W/m2.

Fig.4 Dynamic performance of (a) PV array and (b) BLDC motor Pump ,of Proposed  water pumping system.

Fig. 5 Responses of (a) PV array and (b) BLDC motor, under partial shading


The proposed BLDC motor driven water pumping based on a single stage solar PV generation has been validated through a demonstration of its various steady state, starting and dynamic performances. The system has been simulated using the MATLAB toolboxes, and implemented on an experimental prototype. The topology of the proposed system has provided a DC-DC converter-less solution for PV fed brushless DC motor driven water pumping. Moreover, the motor phase current sensing elements have been eliminated, resulting in a simple and cost-effective drive. The other desired functions are the speed control without any additional circuit and a soft start of the motor-pump. A detailed comparative analysis of the proposed and the existing topologies has ultimately manifested the superiority of the proposed work.


[1] C. Jain and B. Singh, “An Adjustable DC Link Voltage Based Control of Multifunctional Grid Interfaced Solar PV System,” IEEE J. Emerg. Sel. Topics Power Electron., Early Access.

[2] A. A. A. Radwan and Y. A. R. I. Mohamed, “Power Synchronization Control for Grid-Connected Current-Source Inverter-Based Photovoltaic Systems,” IEEE Trans. Energy Convers., vol. 31, no. 3, pp. 1023-1036, Sept. 2016.

[3] P. Vithayasrichareon, G. Mills and I. F. MacGill, “Impact of Electric Vehicles and Solar PV on Future Generation Portfolio Investment,” IEEE Trans. Sustain. Energy, vol. 6, no. 3, pp. 899-908, July 2015.

[4] A. K. Mishra and B. Singh, “A single stage solar PV array based water pumping system using SRM drive,” IEEE Ind. Appl. Soc. Annu. Meeting, Portland, OR, 2016, pp. 1-8.

[5] S. Jain, A.K. Thopukara, R. Karampuri and V.T. Somasekhar, “A Single-Stage Photovoltaic System for a Dual-Inverter-Fed Open-End Winding Induction Motor Drive for Pumping Applications,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 4809 – 4818, Sept. 2015.