A Hysteresis Current Controller for Grid-Connected Inverter with Reduced Losses

ABSTRACT:

In this paper, a hysteresis current controller with reduced losses for three-phase grid-connected inverter is proposed. In the proposed hysteresis current controller, one of the inverter phase is clamped to the positive or negative inverter buses depending on the polarity of the phase current. Totally, each inverter phase is clamped for the duration of one third of the fundamental output period. As the inverter phase is inactive when the current is the highest, the switching losses are reduced. Simulation and experimental results are included to show the effectiveness of the proposed controller.

 

KEYWORDS:

  1. Current controller
  2. Hysteresis
  3. Grid-connected inverter,
  4. Losses
  5. Clamped

 

SOFTWARE: MATLAB/SIMULINK

  

CIRCUIT DIAGRAM:

Power controller of grid-connected inverter

Fig. 1. Power controller of grid-connected inverter

 

EXPECTED SIMULATION RESULTS:

conventional hysteresis current controller

Fig. 2. Output current and switching pattern of: (a) conventional hysteresis current controller, (b) proposed hysteresis current controller

 proposed hysteresis current controller

Fig. 3. Output current and switching pattern of: (a) conventional hysteresis current controller, (b) proposed hysteresis current controller

 

CONCLUSION:

A simple hysteresis current controller with reduced losses has been proposed in this paper. In the proposed current controller, one of the inverter phase is clamped to the positive or negative DC bus, depending on the polarity, when the magnitude of the current is the greatest. This lead to reduction of the average switching frequency as well as the switching losses. Simulation and experimental results have shown that the proposed hysteresis controller is able to reduce the switching losses without sacrificing the output current waveform.

 

REFERENCES:

  • Jain and V. Agarwal, “A Single-Stage Grid Connected Inverter Topology for Solar PV Systems With Maximum Power Point Tracking,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 1928–1940, 2007.
  • Mohseni and S. M. Islam, “A new vector-based hysteresis current control scheme for three-phase PWM voltage-source inverters,” IEEE Trans. Power Electron., vol. 25, no. 9, pp. 2299–2309, 2010.
  • P. Kazmierkowski and M. A. Dzieniakowski, “Review of currentregulation techniques for three-phase PWM inverters,” Proc. IECON’94 – 20th Annu. Conf. IEEE Ind. Electron., vol. 1, pp. 567–575, 1994.
  • Zhang and H. Lin, “Simplified model predictive current control method of voltage-source inverter,” 8th Int. Conf. Power Electron. – ECCE Asia, pp. 1726–1733, 2011.
  • C. Hua, C. W. Wu, and C. W. Chuang, “A digital predictive current control with improved sampled inductor current for cascaded inverters,” IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1718–1726, 2009.

Control and Performance Analysis of a Single-Stage Utility-Scale Grid-Connected PV System

IEEE SYSTEMS JOURNAL, VOL. 11, NO. 3, SEPTEMBER 2015

ABSTRACT:

For utility-scale photovoltaic (PV) systems, the control objectives, such as maximum power point tracking, synchronization with grid, current control, and harmonic reduction in output current, are realized in single stage for high efficiency and simple power converter topology. This paper considers a highpower three-phase single-stage PV system, which is connected to a distribution network, with a modified control strategy, which includes compensation for grid voltage dip and reactive power injection capability. To regulate the dc-link voltage, a modified voltage controller using feedback linearization scheme with feedforward PV current signal is presented. The real and reactive powers are controlled by using dq components of the grid current. A small-signal stability/eigenvalue analysis of a grid-connected PV system with the complete linearized model is performed to assess the robustness of the controller and the decoupling character of the grid-connected PV system. The dynamic performance is evaluated on a real-time digital simulator.

 

KEYWORDS:

  1. DC-link voltage control
  2. Feedback linearization (FBL)
  3. Photovoltaic (PV) systems
  4. Reactive power control
  5. Small signal stability analysis
  6. Voltage dip.

SOFTWARE: MATLAB/SIMULINK

 

BLOCK DIAGRAM:

One of the four 375-kW subsystems.

Fig. 1. One of the four 375-kW subsystems.

  

EXPECTED SIMULATION RESULTS:

(a) PV array voltage for MPPT. (b) PV array (PPV) and grid injected real power (Pg). (c) Grid injected reactive power (Qg).

Fig. 2. (a) PV array voltage for MPPT. (b) PV array (PPV) and grid injected real power (Pg). (c) Grid injected reactive power (Qg).

Grid injected currents and THD.

Fig. 3. Grid injected currents and THD.

PV system response to voltage dip in grid.

Fig. 4 PV system response to voltage dip in grid.

PV system response to a three-phase fault at bus 3.

Fig. 5. PV system response to a three-phase fault at bus 3.

PV system response to an LG fault.

Fig. 6. PV system response to an LG fault.

Pg  response of the whole 1.5-MW PV system.

Fig. 7. Pg  response of the whole 1.5-MW PV system.

 

CONCLUSION:

The proposed modified dc-link voltage controller with FBL technique, using INC MPPT, and real and reactive power controls with enhanced filter for compensation for grid voltage dips has been tested at different insolation levels on a real-time digital simulator (RTDS). Small-signal analysis of a PV system connected to an IEEE 33-bus distributed system is performed. The results from simulation and eigenvalue analysis demonstrate the effectiveness of the FBL controller compared with the controller without FBL. It is found that the FBL controller  outperforms the controllerwithout FBL, as the FBL controller’s  performance is linear at different operating conditions. With grid voltage dip compensator filter, the dynamic performance is much improved in terms of less oscillations and distortion in waveforms. In addition, the eigenvalue analysis shows that the effect of the disturbance in distribution system is negligible on PV system stability as the eigenmodes of the PV system are almost independent of the distribution system. This has been also confirmed by three-phase fault analysis of distribution system in RTDS model. The controller performance is also validated on 4×375 kW PV units connected to the distribution system.

 

REFERENCES:

  • Oprisan and S. Pneumaticos, “Potential for electricity generation from emerging renewable sources in Canada,” in Proc. IEEE EIC Climate Change Technol. Conf., May 2006, pp. 1–10.
  • Petrone, G. Spagnuolo, R. Teodorescu, M. Veerachary, and M. Vitelli, “Reliability issues in photovoltaic power processing systems,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2569–2580, Jul. 2008.
  • Jain and V. Agarwal, “A single-stage grid connected inverter topology for solar PV systems with maximum power point tracking,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 1928–1940, Jul. 2007.
  • Katiraei and J. Aguero, “Solar PV integration challenges,” IEEE Power Energy Mag., vol. 9, no. 3, pp. 62–71, May-Jun. 2011.
  • H. Ko, S. Lee, H. Dehbonei, and C. Nayar, “Application of voltageand current-controlled voltage source inverters for distributed generation systems,” IEEE Trans. Energy Convers., vol. 21, no. 3, pp. 782–792, Sep. 2006.

Automatic droop control for a low voltage DC Microgrid

ABSTRACT

A DC microgrid (DC-MG) provides an effective mean to integrate various sources, energy storage units and loads at a common dc-side. The droop-based, in the context of a decentralized control, has been widely used for the control of the DC-MG. However, the conventional droop control cannot achieve both accurate current sharing and desired voltage regulation. This study proposes a new adaptive control method for DC-MG applications which satisfies both accurate current sharing and acceptable voltage regulation depending on the loading condition. At light load conditions where the output currents of the DG units are well below the maximum limits, the accuracy of the current sharing process is not an issue. As the load increases, the output currents of the DG units increase and under heavy load conditions accurate current sharing is necessary. The proposed control method increases the equivalent droop gains as the load level increases and achieves accurate current sharing. This study evaluates the performance and stability of the proposed method based on a linearised model and verifies the results by digital time-domain simulation and hardware-based experiments.

 

SOFTWARE: MATLAB/SIMULINK

 

BLOCK DIAGRAM:

Fig. 1 Simplified DC-MG with two DG units

 

EXPECTED SIMULATION RESULTS:

 

Fig. 2 Output currents of the DG units obtained in Simulation Results

a Conventional droop control method with small droop gains

b Conventional droop control method with large droop gains

c Proposed method

 

 

Fig. 3 Output voltages of the DG units obtained in Simulation Results

a Conventional droop control method with small droop gains

b Conventional droop control method with large droop gains

c Proposed method

 

CONCLUSION

This paper presents a new control scheme for DC-MG without using any communication links. In the conventional droop control, small droop gains result in good voltage regulation but inaccurate current sharing, and large droop gains result in accurate current sharing but unacceptable voltage regulation. To overcome this drawback, a new control method is proposed in which the equivalent droop gains automatically change based on the loading condition. The simulation results show and the experimental results verify that by adaptively changing the droop gains according to the load size, both accurate current sharing and desirable voltage regulation are achieved.

REFERENCES

  • Guerrero, J., Loh, P.C., Lee, T.-L., et al.: ‘Advanced control architectures for intelligent microgrids; part ii: Power quality, energy storage, and ac/dc microgrids’, IEEE Trans. Ind Electron., 2013, 60, (4), pp. 1263–1270
  • Vandoorn, T., De Kooning, J., Meersman, B., et al.: ‘Automatic power-sharing modification of p/v droop controllers in low-voltage resistive microgrids’, IEEE Trans. Power Deliv., 2012, 27, (4), pp. 2318–2325
  • Khorsandi, A., Ashourloo, M., Mokhtari, H.: ‘An adaptive droop control method for low voltage dc microgrids’. 2014 Fifth Power Electronics, Drive Systems and Technologies Conf. (PEDSTC), 2014, pp. 84–89
  • Loh, P.C., Li, D., Chai, Y.K., et al.: ‘Hybrid ac-dc microgrids with energy storages and progressive energy flow tuning’, IEEE Trans. Power Electron., 2013, 28, (4), pp. 1533–1543
  • Loh, P., Li, D., Chai, Y.K., et al.: ‘Autonomous operation of hybrid microgrid with ac and dc subgrids’, IEEE Trans. Power Electron., 2013, 28, (5), pp. 2214–2223

Power System Stability and Control Projects

Power System Stability and Control Projects List

At present the demand for electricity is rising phenomenally especially in developing country like India. This persistent demand is leading to operation of the power system at its limit. The need for reliable, stable and quality power is on the rise due to electric power sensitive industries like information technology, communication, electronics etc. In this scenario, meeting
the electric power demand is not the only criteria but also it is the responsibility of the power system engineers to provide a stable and quality power to the consumers. These issues highlight the necessity of understanding the power system stability. In this course we will try to understand how to asses the stability of a power system, how to improve the stability and finally how to prevent system becoming unstable.

“Power system stability is the ability of an electric power system, for a given initial operating condition, to regain a state of operating equilibrium after being subjected to a physical disturbance, with most of the system variables bounded so that practically the entire system remains intact” [1], [2]. The disturbances mentioned in the definition could be faults, load changes, generator outages, line outages, voltage collapse or some combination of these. Power system stability can be broadly classified into rotor angle, voltage and frequency stability. Each of these three stabilities can be further classified into large disturbance or small disturbance, short term or long term.

Voltage stability
“It is the ability of the system to maintain steady state voltages at all the system buses when subjected to a disturbance. If the disturbance is large then it is called as large-disturbance voltage stability and if the disturbance is small it is called as small-disturbance voltage stability”. Unlike angle stability, voltage stability can also be a long term phenomenon. In case voltage fluctuations occur due to fast acting devices like induction motors, power electronic drive, HVDC etc then the time frame for understanding the stability is in the range of 10-20 s and hence can be treated as short term phenomenon. On the other hand if voltage variations are due to slow change in load, over loading of lines, generators hitting reactive power limits, tap changing transformers etc then time frame for voltage stability can stretch from 1 minute to several minutes. The main difference between voltage stability and angle stability is that voltage stability depends on the balance of reactive power demand and generation in the system where as the angle stability mainly depends on the balance between real power generation and demand.

Power System Stability and Control projects

Power system stability and control projects

BTech, MTech, IEEE Electrical Projects using Matlab/Simulink, Jalna, Maharashtra, India

IEEE Electrical Projects List-2015/2016/2017

Software Used: Matlab/Simulink

Areas : Power Electronics and Drives, Power Systems, Renewable Energy and sources, etc

Download

Electrical engineering is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.

Electrical engineering has now subdivided into a wide range of sub fields including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.

Electrical engineers typically hold a degree in electrical engineering or electronic engineering. Practicing engineers may have professional certification and be members of a professional body. Such bodies include the Institute of Electrical and Electronics Engineers (IEEE) and the Institution of Engineering and Technology (professional society) (IET).

Electrical engineers work in a very wide range of industries and the skills required are likewise variable. These range from basic circuit theory to the management skills required of a project manager. The tools and equipment that an individual engineer may need are similarly variable, ranging from a simple voltmeter to a top end analyzer to sophisticated design and manufacturing software.

 

BTech, MTech, IEEE Electrical Projects using Matlab/Simulink, AURANGABAD, Maharashtra, India

BTech MTech IEEE ELectrical Projects List-2015/2016/2017

Software Used: Matlab/Simulink

Areas : Power Electronics and Drives, Power Systems, Renewable Energy and sources, etc

Download

Electrical engineering is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.

Electrical engineering has now subdivided into a wide range of sub fields including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.

Electrical engineers typically hold a degree in electrical engineering or electronic engineering. Practicing engineers may have professional certification and be members of a professional body. Such bodies include the Institute of Electrical and Electronics Engineers (IEEE) and the Institution of Engineering and Technology (professional society) (IET).

Electrical engineers work in a very wide range of industries and the skills required are likewise variable. These range from basic circuit theory to the management skills required of a project manager. The tools and equipment that an individual engineer may need are similarly variable, ranging from a simple voltmeter to a top end analyzer to sophisticated design and manufacturing software.

BTech MTech IEEE Electrical Projects

btech mtech ieee electrical projects

BTECH, MTECH, MATLAB/SIMULINK IEEE ELECTRICAL PROJECTS, AKOLA, MAHARASHTRA, INDIA

Latest IEEE ELectrical Projects List-2015/2016/2017

Software Used: Matlab/Simulink

Areas : Power Electronics and Drives, Power Systems, Renewable Energy and sources, etc

Download

ELECTRICAL ENGINEERING is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.

Electrical engineering has now subdivided into a wide range of sub fields including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.

POWER ELECTRONICS is the application of solid-state electronics to the control and conversion of electric power. The first high power electronic devices were mercury-arc valves. In modern systems the conversion is performed with semiconductor switching devices such as diodes, thyristors and transistors, pioneered by R. D. Middlebrook and others beginning in the 1950s. In contrast to electronic systems concerned with transmission and processing of signals and data, in power electronics substantial amounts of electrical energy are processed. An AC/DC converter (rectifier) is the most typical power electronics device found in many consumer electronic devices, e.g. television sets, personal computers, battery chargers, etc. The power range is typically from tens of watts to several hundred watts. In industry a common application is the variable speed drive (VSD) that is used to control an induction motor. The power range of VSDs start from a few hundred watts and end at tens of megawatts.

An ELECTRIC POWER SYSTEM is a network of electrical components deployed to supply, transfer, and use electric power. An example of an electric power system is the the grid that provides power to an extended area. An electrical grid power system can be broadly divided into the generators that supply the power, the transmission system that carries the power from the generating centres to the load centres, and the distribution system that feeds the power to nearby homes and industries. Smaller power systems are also found in industry, hospitals, commercial buildings and homes. The majority of these systems rely upon three-phase AC power—the standard for large-scale power transmission and distribution across the modern world. Specialised power systems that do not always rely upon three-phase AC power are found in aircraft, electric rail systems, ocean liners and automobiles.

MATLAB (matrix laboratory) is a multi-paradigm numerical computing environment and fourth-generation programming language. A proprietary programming language developed by MathWorks, MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages, including C, C++, C#, Java, Fortran and Python.

SIMULINK, developed by MathWorks, is a graphical programming environment for modeling, simulating and analyzing multidomain dynamic systems. Its primary interface is a graphical block diagramming tool and a customizable set of block libraries. It offers tight integration with the rest of the MATLAB environment and can either drive MATLAB or be scripted from it. Simulink is widely used in automatic control and digital signal processing for multidomain simulation and Model-Based Design.

AKOLA, MAHARASHTRA, INDIA

BTech, MTech, IEEE Electrical Projects using Matlab/Simulink Maharashtra, India

latest IEEE Electrical Projects Maharashtra

Latest IEEE ELectrical Projects List-2015/2016/2017

Software Used: Matlab/Simulink

Areas : Power Electronics and Drives, Power Systems, Renewable Energy and sources, etc

Download

latest IEEE Electrical Projects Maharashtra

ELECTRICAL ENGINEERING is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.

Electrical engineering has now subdivided into a wide range of sub fields including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.

POWER ELECTRONICS is the application of solid-state electronics to the control and conversion of electric power. The first high power electronic devices were mercury-arc valves. In modern systems the conversion is performed with semiconductor switching devices such as diodes, thyristors and transistors, pioneered by R. D. Middlebrook and others beginning in the 1950s. In contrast to electronic systems concerned with transmission and processing of signals and data, in power electronics substantial amounts of electrical energy are processed. An AC/DC converter (rectifier) is the most typical power electronics device found in many consumer electronic devices, e.g. television sets, personal computers, battery chargers, etc. The power range is typically from tens of watts to several hundred watts. In industry a common application is the variable speed drive (VSD) that is used to control an induction motor. The power range of VSDs start from a few hundred watts and end at tens of megawatts.

An ELECTRIC POWER SYSTEM is a network of electrical components deployed to supply, transfer, and use electric power. An example of an electric power system is the the grid that provides power to an extended area. An electrical grid power system can be broadly divided into the generators that supply the power, the transmission system that carries the power from the generating centres to the load centres, and the distribution system that feeds the power to nearby homes and industries. Smaller power systems are also found in industry, hospitals, commercial buildings and homes. The majority of these systems rely upon three-phase AC power—the standard for large-scale power transmission and distribution across the modern world. Specialised power systems that do not always rely upon three-phase AC power are found in aircraft, electric rail systems, ocean liners and automobiles.

MATLAB (matrix laboratory) is a multi-paradigm numerical computing environment and fourth-generation programming language. A proprietary programming language developed by MathWorks, MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages, including C, C++, C#, Java, Fortran and Python.

SIMULINK, developed by MathWorks, is a graphical programming environment for modeling, simulating and analyzing multidomain dynamic systems. Its primary interface is a graphical block diagramming tool and a customizable set of block libraries. It offers tight integration with the rest of the MATLAB environment and can either drive MATLAB or be scripted from it. Simulink is widely used in automatic control and digital signal processing for multidomain simulation and Model-Based Design.

latest IEEE Electrical Projects Maharashtra

Top Best Electrical Projects

ELECTRICAL PROJECTS USING MATLAB/SIMULINK
asokatechnologies@gmail.com
ACADEMIC MATLAB SIMULATION PROJECTS FOR
 ELECTRICAL AND ELECTRONICs ENGINEERING[EEE]
 POWER ELECTRONICs AND DRIVES[PED]
 POWER SYSTEMS [PS]….
We Can also Develop Your Own Ideas and Your IEEE Papers With
Extension also…
We also write papers for your projects and give guidance for paper
publishing.
For Further Details Call Us @
0-9347143789/9949240245
Visit us at: www.asokatechnologies.in
For Abstracts of IEEE papers and For Any Queries
Mail us : asokatechnologies@gmail.com

Electrical engineering is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.

Electrical engineering has now subdivided into a wide range of sub fields including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.

Electrical engineers typically hold a degree in electrical engineering or electronic engineering. Practicing engineers may have professional certification and be members of a professional body. Such bodies include the Institute of Electrical and Electronics Engineers (IEEE) and the Institution of Engineering and Technology (professional society) (IET).

Electrical engineers work in a very wide range of industries and the skills required are likewise variable. These range from basic circuit theory to the management skills required of a project manager. The tools and equipment that an individual engineer may need are similarly variable, ranging from a simple voltmeter to a top end analyzer to sophisticated design and manufacturing software.

 

Core Electrical Engineering Projects

AT16-01 Generation of Higher Number of Voltage Levels by stacking inverters of lower multilevel structure with low voltage devices for drives 2016 IEEE
AT16-02 A Novel Multilevel Multi-Output Bidirectional Active Buck PFC Rectifier 2016 IEEE
AT16-03 Optimal Pulse width Modulation of Medium-Voltage Modular Multilevel Converter 2016 IEEE
AT16-04  Novel Family of Single-Phase Modified Impedance-Source Buck-Boost Multilevel Inverters with Reduced Switch Count 2016 IEEE
AT16-05  Adaptive Neuro Fuzzy Inference System Least Mean Square Based Control Algorithm for DSTATCOM 2016 IEEE
AT16-06 An Islanding Detection Method for Inverter-Based

Distributed Generators Based on the Reactive Power Disturbance

2016 IEEE
AT16-07 Quasi-Z-Source Inverter With a T-Type Converter in Normal and Failure Mode 2016 IEEE
AT16-08 Real-Time Implementation of Model Predictive

Control on 7-Level Packed U-Cell Inverter

2016 IEEE
AT16-09 High frequency inverter topologies integrated with the coupled inductor bridge arm 2016 IET

Electrical engineering is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.

Electrical engineering has now subdivided into a wide range of sub fields including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.

Electrical engineers typically hold a degree in electrical engineering or electronic engineering. Practicing engineers may have professional certification and be members of a professional body. Such bodies include the Institute of Electrical and Electronics Engineers (IEEE) and the Institution of Engineering and Technology (professional society) (IET).

Electrical engineers work in a very wide range of industries and the skills required are likewise variable. These range from basic circuit theory to the management skills required of a project manager. The tools and equipment that an individual engineer may need are similarly variable, ranging from a simple voltmeter to a top end analyzer to sophisticated design and manufacturing software.