aThree-Phase Transformerless Shunt Active Power Filter with Reduced Switch Count for Harmonic Compensation in Grid-Connected Applications

ABSTRACT:

Shunt active power filter is the preeminent solution against nonlinear loads, current harmonics and power quality problems. APF topologies for harmonic compensation use numerous high-power rating components and are therefore disadvantageous. Hybrid topologies combining low-power rating APF with passive filters are used to reduce the power rating of voltage source inverter. Hybrid APF topologies for high-power rating systems use a transformer with large numbers of passive components. In this paper, a novel four-switch two-leg VSI topology for a three-phase SAPF is proposed for reducing the system cost and size. The proposed topology comprises a two-arm bridge structure, four switches, coupling inductors, and sets of LC PFs. The third leg of the three-phase VSI is removed by eliminating the set of power switching devices, thereby directly connecting the phase with the negative terminals of the dc-link capacitor. The proposed topology enhances the harmonic compensation capability and provides complete reactive power compensation compared with conventional APF topologies. The new experimental prototype is tested in the laboratory to verify the results in terms of total harmonic distortion, balanced supply current, and harmonic compensation, following the IEEE-519 standard.

KEYWORDS:

  1. Harmonics
  2. hybrid topology
  3. nonlinear load
  4. power quality (PQ)
  5. Transformerless inverter
  6. Grid-connected system

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:

Fig. 1. Proposed transformerless APF system

EXPECTED SIMULATION RESULTS:

 Fig. 2. Steady state operation of the proposed SAPF a) Utility voltage (THDv=4%) b) Utility current (THDi=4.1%) c) Load current (THDi=30.1%) d) Compensating filter current.

Fig. 3. a) DC voltage (50V/div). b) Filter current (100A/div) at filter switched ON (t=0.15).

Fig. 4. Starting performance of the proposed SAPF. a) Utility voltage (THDv=4%) b) Utility current (THDi=4.1%) c) Load current (THDi=30.1%) d) Compensating current at switched ON.

Fig. 5. a) On-state and Off-state APF operations. b) Zoom image of utility line current (𝒊𝑺𝒂𝒃𝒄) at 5th and 7th order harmonics.

Fig. 6. Dynamic performance with the R-L load step-change waveforms of the proposed SAPF.

 CONCLUSION:

In this paper, a novel three-phase reduced switch count and transformer-less APF circuit, operating with the function of active filtering and enhanced reactive power compensation. The main point of the proposed APF circuit topology, which uses a two-leg bridge structure and only four IGBT power devices in the three-phase power converter. Compared with the other existing topologies, the elimination of the transformer and minimum active and passive component contributes to a significant reduction in the manufacturing cost, volumetric size and weight. The proposed APF system is more robust, efficient and stable to improve the feasibility and harmonic propagation of the power distribution system. A detail analysis of the both the active filter inverter and passive filter, including the reactive power capability and filtering characteristics has been presented. The series LC tuned PF at the 5th and 7th order harmonic frequencies improves the harmonic mitigation performance. However, the series ac coupling inductors can overcome the fixed reactive power compensation caused by the defined value of the LC filter. The control algorithm can ensure the regulated sinusoidal voltage, phase amplitude, and low THD in the power distribution system, along with dc-link voltage control. The experimental and simulation results have verified the feasibility of the proposed APF topology and its excellent performance in terms of both transient and steady states responses to compensate selectively either the reactive power compensation, as well as in damping out the current harmonic distortion. Furthermore, the proposed APF system based on transformerless and power switching device reduced count configuration could be used in extensive applications, such as the grid-connected power converters, grid interfaced distributed energy sources, and so on.

REFERENCES:

[1] S. D. Swain, P. K. Ray, and K. B. Mohanty, “Improvement of Power Quality Using a Robust Hybrid Series Active Power Filter,” IEEE Transactions on Power Electronics, vol. 32, pp. 3490-3498, 2017.

[2] A. Javadi, A. Hamadi, L. Woodward, and K. Al-Haddad, “Experimental Investigation on a Hybrid Series Active Power Compensator to Improve Power Quality of Typical Households,” IEEE Transactions on Industrial Electronics, vol. 63, pp. 4849-4859, 2016.

[3] W. U. Tareen, S. Mekhilef, M. Seyedmahmoudian, and B. Horan, “Active power filter (APF) for mitigation of power quality issues in grid integration of wind and photovoltaic energy conversion system,” Renewable and Sustainable Energy Reviews, vol. 70, pp. 635-655, 4// 2017.

[4] J. Solanki, N. Fröhleke, and J. Böcker, “Implementation of Hybrid Filter for 12-Pulse Thyristor Rectifier Supplying High-Current Variable-Voltage DC Load,” IEEE Transactions on Industrial Electronics, vol. 62, pp. 4691-4701, 2015.

[5] L. Asiminoaei, C. Lascu, F. Blaabjerg, and I. Boldea, “Performance Improvement of Shunt Active Power Filter With Dual Parallel Topology,” IEEE Transactions on Power Electronics, vol. 22, pp. 247-259, 2007.

A Two Degrees of Freedom Resonant Control Scheme for Voltage Sag Compensation in Dynamic Voltage Restorers

 

 IEEE Transactions on Power Electronics, 2017

ABSTRACT:

This paper presents a two degrees of freedom (2DOF) control scheme for voltage compensation in a dynamic voltage restorer (DVR). It commences with the model of the DVR power circuit, which is the starting point for the control design procedure. The control scheme is based on a 2DOF structure implemented in a stationary reference frame (α−β), with two nested controllers used to obtain a pass-band behavior of the closed-loop transfer function, and is capable of achieving both a balanced and an unbalanced voltage sag compensation. The 2DOF control has certain advantages with regard to traditional control methods, such as the possibility of ensuring that all the poles of the closed-loop transfer function are chosen without the need for observers and reducing the number of variables to be measured. The use of the well-known double control- loop schemes which employ feedback current controllers to reduce the resonance of the plant is, therefore, unnecessary. A simple control methodology permits the dynamic behavior of the system to be controlled and completely defines the location of the poles. Furthermore, extensive simulations and experimental results obtained using a 5 kW DVR laboratory prototype show the good performance of the proposed control strategy.

 

KEYWORDS:

  1. Power Quality
  2. Dynamic Voltage Restorer (DVR)
  3. Control Design
  4. Resonant Controller
  5. Stationary Frame Controller
  6. Voltage Sag.

 

SOFTWARE: MATLAB/SIMULINK

 

BLOCK DIAGRAM:

Fig. 1. Power system with a DVR included.

 

EXPECTED SIMULATION RESULTS:

 

Figure 2. DVR simulation for a balanced voltage sag. (a) Line-to-neutral three-phase voltages at PCC, (b) line-to-neutral voltages generated by the DVR, (c) line-to-neutral load voltages, and (d) error signal in α − β (redblue).

Figure 3 DVR simulation for an unbalanced voltage sag. (a) Line-to-neutral three-phase voltages at PCC, (b) line-to-neutral voltages generated by the DVR, (c) line-to-neutral load voltages, and (d) error signal in α − β (redblue).

Figure 4. DVR simulation for a 30 % balanced voltage sag. (a) Line-to neutral three-phase voltages at PCC, (b) error signal in α − β (red-blue) for the 2DOF-Resonant scheme, (c) error signal in α − β (red-blue) for double loop scheme, and (d) error signal in α−β (red-blue) for the double-loop with Posicast scheme.

Figure 5. DVR simulation for a 30 % type-E unbalanced voltage sag. (a) Line-to-neutral three-phase voltages at PCC, (b) error signal in α − β (redblue) for the 2DOF-Resonant scheme, (c) error signal in α − β (red blue) for double-loop scheme, and (d) error signal in α − β (red-blue) for the double-loop with Posicast scheme.

 

 CONCLUSION:

This paper presents a control scheme based on two nested controllers for voltage sag compensation in a DVR. The nested regulators provide the control with two degrees of freedom, and the control scheme is implemented in the stationary reference frame. Furthermore, in order to accomplish the requirements for voltage sag compensation, it is necessary to track the component at the fundamental frequency. This is achieved using a resonant term in one of the controllers. The proposed control design methodology is able to define all the poles of the closed-loop system without observers and with a reduction in the number of variables that must be measured, thus making it possible to avoid the use of the traditional current loop employed in control schemes for the DVR. The structure with the nested regulators achieves perfect zero tracking error at the nominal frequency and blocks the DC offset, signifying that it has some advantages over other control methods, such as double-loop schemes with proportional-resonant regulators. Moreover, the design methodology is thoroughly explained when the delay in the calculations is taken into account.

In this case, the design procedure allows the dominant poles of the closed-loop system to be chosen. If the closed-loop poles are chosen carefully, this control structure can also be applied to other systems which require higher delays, e.g., power converter applications with a reduced switching frequency. The design methodology can additionally be extended to the discrete domain. Comprehensive simulated and experimental results corroborate the performance of the 2DOF-Resonant control scheme for balanced and unbalanced voltage sags. The proposed control scheme is able to compensate both types of voltage sags with a very fast transient response and an accurate tracking of the reference voltage, even when the different types of loads and frequency deviations of the grid voltages are considered. Extended comparisons with a PR controller using a double-loop scheme and a PR controller in a double loop with a Posicast regulator have been carried out, demonstrating that the performance of the 2DOF-Resonant controller is superior in all cases. Moreover, the study of the stability as regards parameter variations for the compared control schemes demonstrates the more robust behavior of the 2DOF-Resonant control scheme.

 

REFERENCES:

  • H. M. Quezada, J. R. Abbad, and T. G. S. Rom´an, “Assessment of energy distribution losses for increasing penetration of distributed generation,” IEEE Transactions on Power Systems, vol. 21, no. 2, pp. 533–540, May 2006.
  • K. Jukan, A. Jukan, and A. Toki´c, “Identification and assessment of key risks and power quality issues in liberalized electricity markets in europe,” International Journal of Engineering & Technology, vol. 11, no. 03, pp. 20–26, 2011.
  • EN-50160, European Standard EN-50160. Voltage Characteristics of Public Distribution Systems, CENELEC Std., November 1999.
  • 1547, IEEE Std. 1547-2003. Standard for Interconnecting Distributed Resources with Electric Power Systems, IEEE Std., June 2003.
  • P. Mahela and A. G. Shaik, “Topological aspects of power quality improvement techniques: A comprehensive overview,” Renewable and Sustainable Energy Reviews, vol. 58, pp. 1129–1142, May 2016.

Multiconverter Unified Power-Quality Conditioning System: MC-UPQC

 

ABSTRACT:

This paper presents a new unified power-quality conditioning system (MC-UPQC), capable of simultaneous compensation for voltage and current in multibus/multifeeder systems. In this configuration, one shunt voltage-source converter (shunt VSC) and two or more series VSCs exist. The system can be applied to adjacent feeders to compensate for supply-voltage and load current imperfections on the main feeder and full compensation of supply voltage imperfections on the other feeders. In the proposed configuration, all converters are connected back to back on the dc side and share a common dc-link capacitor. Therefore, power can be transferred from one feeder to adjacent feeders to compensate for sag/swell and interruption. The performance of the MC-UPQC as well as the adopted control algorithm is illustrated by simulation. The results obtained in PSCAD/EMTDC on a two-bus/two-feeder system show the effectiveness of the proposed configuration.

KEYWORDS:

  1. Power quality (PQ)
  2. PSCAD/EMTDC
  3. Unified power-quality conditioner (UPQC)
  4. Voltage-source converter (VSC)

 SOFTWARE: MATLAB/SIMULINK

 BLOCK DIAGRAM:

Fig. 1. Typical MC-UPQC used in a distribution system.

Fig. 2. Control block diagram of the shunt VSC.

Fig. 3. Control block diagram of the series VSC.

EXPECTED SIMULATION RESULTS:

Fig. 4. BUS2 voltage, series compensating voltage, and load voltage in Feeder2.

Fig. 5. Nonlinear load current, compensating current, Feeder1 current, and capacitor voltage.

Fig. 6. Simulation results for an upstream fault on Feeder2: BUS2 voltage, compensating voltage, and loads L1 and L2 voltages.

Fig. 7. Simulation results for load change: nonlinear load current, Feeder1 current, load L1 voltage, load L2 voltage, and dc-link capacitor voltage.

Fig. 8. BUS1 voltage, series compensating voltage, and load voltage in Feeder1 under unbalanced source voltage.

 CONCLUSION:

In this paper, a new configuration for simultaneous compensation of voltage and current in adjacent feeders has been proposed. The new configuration is named multi converter unified power-quality conditioner (MC-UPQC). Compared to a conventional UPQC, the proposed topology is capable of fully protecting critical and sensitive loads against distortions, sags/swell, and interruption in two-feeder systems. The idea can be theoretically extended to multibus/multifeeder systems by adding more series VSCs. The performance of the MC-UPQC is evaluated under various disturbance conditions and it is shown that the proposed MC-UPQC offers the following advantages:

1)  power transfer between two adjacent feeders for sag/swell and interruption compensation;

2) compensation for interruptions without the need for a battery storage system and, consequently, without storage capacity limitation;

3) sharing power compensation capabilities between two adjacent feeders which are not connected.

REFERENCES:

[1] D. D. Sabin and A. Sundaram, “Quality enhances reliability,” IEEE Spectr., vol. 33, no. 2, pp. 34–41, Feb. 1996.

[2] M. Rastogi, R. Naik, and N. Mohan, “A comparative evaluation of harmonic reduction techniques in three-phase utility interface of power electronic loads,” IEEE Trans. Ind. Appl., vol. 30, no. 5, pp. 1149–1155, Sep./Oct. 1994.

[3] F. Z. Peng, “Application issues of active power filters,” IEEE Ind. Appl. Mag., vol. 4, no. 5, pp. 21–30, Sep../Oct. 1998.

[4] H. Akagi, “New trends in active filters for power conditioning,” IEEE Trans. Ind. Appl., vol. 32, no. 6, pp. 1312–1322, Nov./Dec. 1996.

[5] L. Gyugyi, C. D. Schauder, S. L. Williams, T. R. Rietman, D. R. Torjerson, and A. Edris, “The unified power flow controller: A new approach to power transmission control,” IEEE Trans. Power Del., vol. 10, no. 2, pp. 1085–1097, Apr. 1995.