An Energy Management Scheme with Power Limit Capability and an Adaptive Maximum Power Point Tracking for Small Standalone PMSG Wind Energy Systems

ABSTRACT:

Due to its high energy generation capability and minimal environmental impact, wind energy is an elegant solution to the growing global energy demand. However, frequent atmospheric changes make it difficult to effectively harness the energy in the wind because maximum power extraction occurs at a different operating point for each wind condition. This paper proposes a parameter independent intelligent power management controller that consists of a slope-assisted maximum power point tracking (MPPT) algorithm and a power limit search (PLS) algorithm for small standalone wind energy systems with permanent synchronous generators. Unlike the parameter independent perturb & observe (P&O) algorithms, the proposed slope-assisted MPPT algorithm preempts logical errors attributed to wind fluctuations by detecting and identifying atmospheric changes. The controller’s PLS is able to minimize the production of surplus energy to minimize the heat dissipation requirements of the energy release mechanism by cooperating with the state observer and using the slope parameter to seek the operating points that result in the desired power rather than the maximum power. The functionality of the proposed energy management control scheme for wind energy systems is verified through simulation results and experimental results.

KEYWORDS:

  1. Wind energy
  2. Maximum power point tracking
  3. Energy management
  4. Power electronics

SOFTWARE: MATLAB/SIMULINK

CIRCUIT DIAGRAM:

Fig 1 System diagram with the proposed management control algorithm

 EXPECTED SIMULATION RESULTS:

 

 Fig 2 Performance of the standard fixed-step size P&O algorithm (average power captured = 1066 W).

Fig 3 Performance of the standard variable-step size P&O algorithm (average power captured = 1106 W).

Fig 4 Performance of the slope-assisted MPPT algorithm (1238 W).

Fig 5 Power coefficient performance of the fixed-step size P&O, variable step size P&O, and the slope assist MPPT (comparison performed under atmospheric identical conditions as depicted in Fig.20).

CONCLUSION:

In this paper, an intelligent parameter-independent power management controller has been presented for standalone offgrid small wind energy systems. With the state observer presiding over the slope-assisted MPPT and the PLS in the proposed controller, the convergence times to the desired operating points is reduced and the logical errors are minimized by identifying the changes in wind conditions. Being applicable for both grid-connected and standalone wind systems, the slope assist MPPT increases a wind system’s MPP search efficiency and enables the wind system to actively adapt to its changing behavior and wind conditions. The PLS algorithm was designed to complement the slope assist MPPT for standalone wind systems that have limited energy storage and use energy dissipation mechanisms to disperse surplus energy. Rather than focusing on capturing maximum power, the power limit search focuses on reducing the size and heat requirements of the energy dissipation mechanism by minimizing surplus power generation as desired. The operating principles of the proposed PLS and MPPT control techniques have been discussed in this paper. Simulation results on a 3kW system and experimental results on a proof-of-concept prototype with a wind turbine emulator have been provided to highlight the merits of this work.

REFERENCES:

[1] Global Wind Energy Council, “Global Wind Report – Anual Market Update 2012,” 2013.

[2] Global Wind Energy Council, “Global Wind 2011 Report,” 2012.

[3] Canadian Wind Energy Association, “Canadian Wind Energy Association,” [Online]. Available: www.canwea.ca.

[4] Q. Wang and L. Chang, “An Intelligent Maximum Power Extraction Algorithm for Inverter-Based Variable Speed Wind Turbine Systems,” IEEE Transactions on Power Electronics, vol. 1, September 2004, pp. 1242-1249.

[5] E. Koutroulis and K. Kalaitzakis, “Design of a Maximum Power Tracking System for Wind Energy Conversion Applications,” IEEE Transaction on Industrial Electronics, vol. 53, no. 2, April 2006, pp. 486-494.

Power Electronics, Power Systems Projects for MTech using Matlab/Simulink in suryapet

Power Electronics, Power Systems Projects for MTech using Matlab/Simulink in suryapet.

Software Used: Matlab/Simulink
Areas : Power Electronics and Drives, Power Systems, Renewable Energy and sources, etc
Download
Contact us:
email: asokatechnologies@gmail.com
website: www.asokatechnologies.in
Asoka technologies provide Power Electronics, Power Systems Projects for MTechusing Matlab/Simulink in suryapet.

ELECTRICAL ENGINEERING is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.
Electrical engineering has now subdivided into a wide range of sub fields including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.
POWER ELECTRONICS is the application of solid-state electronics to the control and conversion of electric power. The first high power electronic devices were mercury-arc valves. In modern systems the conversion is performed with semiconductor switching devices such as diodes, thyristors and transistors, pioneered by R. D. Middlebrook and others beginning in the 1950s. In contrast to electronic systems concerned with transmission and processing of signals and data, in power electronics substantial amounts of electrical energy are processed. An AC/DC converter (rectifier) is the most typical power electronics device found in many consumer electronic devices, e.g. television sets, personal computers, battery chargers, etc. The power range is typically from tens of watts to several hundred watts. In industry a common application is the variable speed drive (VSD) that is used to control an induction motor. The power range of VSDs start from a few hundred watts and end at tens of megawatts.

IEEE Electrical Projects khammam

IEEE Electrical Projects in khammam -2016/17/18

Software Used: Matlab/Simulink

Areas : Power Electronics and Drives, Power Systems, Renewable Energy and sources, etc

Download

Contact us:

email: asokatechnologies@gmail.com

website: www.asokatechnologies.in

Asoka technologies provide IEEE Electrical Projects khammam

ELECTRICAL ENGINEERING is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.

Electrical engineering has now subdivided into a wide range of sub fields including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.

POWER ELECTRONICS is the application of solid-state electronics to the control and conversion of electric power. The first high power electronic devices were mercury-arc valves. In modern systems the conversion is performed with semiconductor switching devices such as diodes, thyristors and transistors, pioneered by R. D. Middlebrook and others beginning in the 1950s. In contrast to electronic systems concerned with transmission and processing of signals and data, in power electronics substantial amounts of electrical energy are processed. An AC/DC converter (rectifier) is the most typical power electronics device found in many consumer electronic devices, e.g. television sets, personal computers, battery chargers, etc. The power range is typically from tens of watts to several hundred watts. In industry a common application is the variable speed drive (VSD) that is used to control an induction motor. The power range of VSDs start from a few hundred watts and end at tens of megawatts.

An ELECTRIC POWER SYSTEM is a network of electrical components deployed to supply, transfer, and use electric power. An example of an electric power system is the the grid that provides power to an extended area. An electrical grid power system can be broadly divided into the generators that supply the power, the transmission system that carries the power from the generating centres to the load centres, and the distribution system that feeds the power to nearby homes and industries. Smaller power systems are also found in industry, hospitals, commercial buildings and homes. The majority of these systems rely upon three-phase AC power—the standard for large-scale power transmission and distribution across the modern world. Specialised power systems that do not always rely upon three-phase AC power are found in aircraft, electric rail systems, ocean liners and automobiles.

MATLAB (matrix laboratory) is a multi-paradigm numerical computing environment and fourth-generation programming language. A proprietary programming language developed by MathWorks, MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages, including C, C++, C#, Java, Fortran and Python.

SIMULINK, developed by MathWorks, is a graphical programming environment for modeling, simulating and analyzing multidomain dynamic systems. Its primary interface is a graphical block diagramming tool and a customizable set of block libraries. It offers tight integration with the rest of the MATLAB environment and can either drive MATLAB or be scripted from it. Simulink is widely used in automatic control and digital signal processing for multidomain simulation and Model-Based Design.

IEEE Electrical Projects khammam.

 

IEEE ELECTRICAL PROJECTS IN ADILABAD

IEEE Electrical Projects  adilabad-2015/2016/2017
Software Used: Matlab/Simulink
Areas : Power Electronics and Drives, Power Systems, Renewable Energy and sources, etc
Download
Contact us:
email: asokatechnologies@gmail.com
website: www.asokatechnologies.in
Asoka technologies provide IEEE Electrical Projects adilabad
ELECTRICAL ENGINEERING is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.
Electrical engineering has now subdivided into a wide range of sub fields including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.
POWER ELECTRONICS is the application of solid-state electronics to the control and conversion of electric power. The first high power electronic devices were mercury-arc valves. In modern systems the conversion is performed with semiconductor switching devices such as diodes, thyristors and transistors, pioneered by R. D. Middlebrook and others beginning in the 1950s. In contrast to electronic systems concerned with transmission and processing of signals and data, in power electronics substantial amounts of electrical energy are processed. An AC/DC converter (rectifier) is the most typical power electronics device found in many consumer electronic devices, e.g. television sets, personal computers, battery chargers, etc. The power range is typically from tens of watts to several hundred watts. In industry a common application is the variable speed drive (VSD) that is used to control an induction motor. The power range of VSDs start from a few hundred watts and end at tens of megawatts.
An ELECTRIC POWER SYSTEM is a network of electrical components deployed to supply, transfer, and use electric power. An example of an electric power system is the the grid that provides power to an extended area. An electrical grid power system can be broadly divided into the generators that supply the power, the transmission system that carries the power from the generating centres to the load centres, and the distribution system that feeds the power to nearby homes and industries. Smaller power systems are also found in industry, hospitals, commercial buildings and homes. The majority of these systems rely upon three-phase AC power—the standard for large-scale power transmission and distribution across the modern world. Specialised power systems that do not always rely upon three-phase AC power are found in aircraft, electric rail systems, ocean liners and automobiles.
MATLAB (matrix laboratory) is a multi-paradigm numerical computing environment and fourth-generation programming language. A proprietary programming language developed by MathWorks, MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages, including C, C++, C#, Java, Fortran and Python.
SIMULINK, developed by MathWorks, is a graphical programming environment for modeling, simulating and analyzing multidomain dynamic systems. Its primary interface is a graphical block diagramming tool and a customizable set of block libraries. It offers tight integration with the rest of the MATLAB environment and can either drive MATLAB or be scripted from it. Simulink is widely used in automatic control and digital signal processing for multidomain simulation and Model-Based Design.
IEEE Electrical Projects adilabad

Power Electronics, Power Systems Projects for MTech using Matlab/Simulink

POWER ELECTRONICS PROJECTS

Power electronics is the technology associated with the efficient conversion, control and conditioning of electric power by static means from its available input form into the desired electrical output form.

Power electronic converters can be found wherever there is a need to modify the electrical energy form (i.e. modify its voltage, current or frequency.) With “classical” electronics, electrical currents and voltage are used to carry information, whereas with power electronics, they carry power. Some examples of uses for power electronic systems are DC/DC converters used in many mobile devices, such as cell phones or PDAs, and AC/DC converters in computers and televisions. Large scale power electronics are used to control hundreds of megawatt of power flow across our nation.

POWER SYSTEMS:

Electric power systems are comprised of components that produce electrical energy and transmit this energy to consumers. A modern electric power system has mainly six main components: 1) power plants which generate electric power, 2) transformers which raise or lower the voltages as needed, 3) transmission lines to carry power, 4) substations at which the voltage is stepped down for carrying power over the distribution lines, 5) distribution lines, and 6) distribution transformers which lower the voltage to the level needed for the consumer equipment. The production and transmission of electricity is relatively efficient and inexpensive, although unlike other forms of energy, electricity is not easily stored, and thus, must be produced based on the demand.

Final year electrical projects in karimnagar

FINAL YEAR ELECTRICAL ENGINEERING

final year electrical is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.

Final year Electrical engineering has now subdivided into a wide range of sub fields `including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.

MATLAB

MATLAB stands for Matrix Laboratory. Matlab is a multi-paradigm numerical computing environment and fourth-generation programming language. It allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages, including C, C++, Java, FORTRAN and Python. MATLAB is a very powerful, high level language. It is empowered with good number of libraries and toolboxes that we can use directly, so that we need not to program low level functions. It enables us to display very easily results on graphs and images. To get started with it, you need to understand how to manipulate and represent data, how to find information about the available functions and how to create scripts and functions to generate programs. This course is designed for comprehensive coverage of Matlab from down-to-the-earth level.

final year electrical

Final year electrical projects in andhra pradesh

Final year electrical projects in andhra pradesh 2017/2018

Software Used: Matlab/Simulink

Areas : Power Electronics and Drives, Power Systems, Renewable Energy and sources, etc

Download

Contact us:

email: asokatechnologies@gmail.com

website: www.asokatechnologies.in

Asoka technologies provide Final year electrical projects in andhra pradesh

ELECTRICAL ENGINEERING is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.

Electrical engineering has now subdivided into a wide range of sub fields `including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.

POWER ELECTRONICS is the application of solid-state electronics to the control and conversion of electric power. The first high power electronic devices were mercury-arc valves. In modern systems the conversion is performed with semiconductor switching devices such as diodes, thyristors and transistors, pioneered by R. D. Middlebrook and others beginning in the 1950s. In contrast to electronic systems concerned with transmission and processing of signals and data, in power electronics substantial amounts of electrical energy are processed. An AC/DC converter (rectifier) is the most typical power electronics device found in many consumer electronic devices, e.g. television sets, personal computers, battery chargers, etc. The power range is typically from tens of watts to several hundred watts. In industry a common application is the variable speed drive (VSD) that is used to control an induction motor. The power range of VSDs start from a few hundred watts and end at tens of megawatts.

Best Electrical Projects Ideas for EEE Final Year Engineering Students

best electrical projects ideas

best electrical projects ideas Electrical projects covering core electrical projects, electronics and embedded electrical are most desirable amongst the student level project work. It gives practical exposure on the hardware that are often used in industries. Real time industrial level projects in machines, transmission lines, power electronics, high voltage etc. are popular as the theoretical subjects read on the same is applied in practical terms for in-depth understanding of the same.

Advanced electrical engineering topics such as FACTS, UPFC, SVPWM, APFC often use power devices like MOSFET, IGBT, SCR, TRIAC. Therefore, basic fundamentals on such power devices are a pre-requisite for understanding these projects. In contrast to hardware based projects, MATLAB projects (software based) give least exposure on the real time hardware applications which seriously limits job opportunities for engineering students in industries. However MATLAB is best suited for R&D level of work in academics

best electrical projects ideas

Flexible AC transmission system (FACTS)

flexible alternating current transmission system (FACTS) is a system composed of static equipment used for the AC transmission of electrical energy. It is meant to enhance controll ability and increase power transfer capability of the network. It is generally a power electronics-based system.

FACTS is defined by the IEEE as “a power electronic based system and other static equipment that provide control of one or more AC transmission system parameters to enhance controll ability and increase power transfer capability.”

According to Siemens “FACTS Increase the reliability of AC grids and reduce power delivery costs. They improve transmission quality and efficiency of power

transmission by supplying inductive or reactive power to the grid.

In shunt compensation, power system is connected in shunt (parallel) with the FACTS. It works as a controllable current source. Shunt compensation is of two types:

Shunt capacitive compensation
This method is used to improve the power factor. Whenever an inductive load is connected to the transmission line, power factor lags because of lagging load current. To compensate, a shunt capacitor is connected which draws current leading the source voltage. The net result is improvement in power factor.
Shunt inductive compensation
This method is used either when charging the transmission line, or, when there is very low load at the receiving end. Due to very low, or no load – very low current flows through the transmission line. Shunt capacitance in the transmission line causes voltage amplification (Ferranti effect). The receiving end voltage may become double the sending end voltage (generally in case of very long transmission lines). To compensate, shunt inductors are connected across the transmission line. The power transfer capability is thereby increased depending upon the power equation

An Envelope Type (E-Type) Module Asymmetric Multilevel Inverters With Reduced Components

ABSTRACT:

This paper presents a new E-Type module for asymmetrical multilevel inverters with reduced components. Each module produces 13 levels with four unequal DC sources and 10 switches. The design of the proposed module makes some preferable features with a better quality than similar modules such as the low number of semiconductors and DC sources and low switching frequency. Also, this module is able to create a negative level without any additional circuit such as an H-bridge which causes reduction of voltage stress on switches. Cascade connection of the proposed structure leads to a modular topology with more levels and higher voltages. Selective harmonics elimination pulse width modulation (SHE-PWM) scheme is used to achieve high quality output voltage with lower harmonics. MATLAB simulations and practical results are presented to validate the proposed module good performance. Module output voltage satisfies harmonics standard (IEEE519) without any filter in output.

KEYWORDS:

  1. Asymmetric
  2. Components
  3. E-Type
  4. Multilevel inverter
  5. Power electronics
  6. Selective harmonics elimination

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:

(a)

Fig. 1 Proposed E-Type module of multilevel inverter (a) Circuit topology

EXPECTED SIMULATION RESULTS:

 Fig.2 Output voltage and FFT analysis of proposed multilevel

CONCLUSION:

This paper presented a new multilevel inverter topology named as Envelope Type (E-Type) module which can generate 13 levels with reduced components. It can be used in high voltage high power applications with unequal DC sources. As E-Type module can be easily modularized, it can be used in cascade arrangements to form high voltage outputs with low stress on semiconductors and lowering the number of devices. Modular connection of these modules leads to achieve more voltage levels with different possible paths. It causes an improvement in the reliability of the modular inverter which enables it to use different paths in case of malfunction for a switch or a driver. The main advantage of proposed module is its ability to generate both positive and negative output voltage without any H-bridge circuit at the output of the inverter. THDv% is obtained 3.46% and 4.54% in simulation and experimental results, respectively that satisfy harmonics standard (IEEE519). Also module is tested in three frequency and under different resistive – inductive loads which results shows good performance.

REFERENCES:

[1] R. Feldman, M. Tomasini, E. Amankwah, J.C. Clare, P.W. Wheeler, D.R. Trainer, R.S. Whitehouse, “A Hybrid Modular Multilevel Voltage Source Converter for HVDC Power Transmission,” IEEE Trans. Ind. Appl., vol.49, no.4, pp.1577–1588, July-Aug. 2013.

[2] M. Odavic, V. Biagini, M. Sumner, P. Zanchetta, M. Degano, “Low Carrier–Fundamental Frequency Ratio PWM for Multilevel Active Shunt Power Filters for Aerospace Applications,” IEEE Trans. Ind. Appl., vol.49, no.1, pp.159–167, Jan.-Feb. 2013.

[3] Liming Liu, Hui Li, Seon-Hwan Hwang, Jang-Mok Kim, “An Energy-Efficient Motor Drive With Autonomous Power Regenerative Control System Based on Cascaded Multilevel Inverters and Segmented Energy Storage,” IEEE Trans. Ind. Appl., vol.49, no.1, pp.178–188, Jan.-Feb. 2013.

[4] Yushan Liu, Baoming Ge, H. Abu-Rub, F.Z. Peng, “An Effective Control Method for Quasi-Z-Source Cascade Multilevel Inverter-Based Grid-Tie Single-Phase Photovoltaic Power System,” IEEE Trans. Ind. Inform., vol.10, no.1, pp.399–407, Feb. 2014.

[5] Jun Mei, Bailu Xiao, Ke Shen, L.M. Tolbert, Jian Yong Zheng, “Modular Multilevel Inverter with New Modulation Method and Its Application to Photovoltaic Grid-Connected Generator,” IEEE Trans. on Power Electron., vol.28, no.11, pp.5063–5073, Nov. 2013.