Control Strategy for Power Flow Management in a PV System Supplying DC Loads

ABSTRACT:

The growing concern for energy saving has increased the usage of LED-based street lights, electronic chokes, compact fluorescent lamps, and inverter-fed drives. Hence, the load profile seen by the electrical grid is undergoing a notable change as these devices have to operate from a dc source. Photovoltaics (PV) being a major energy source, the aforementioned loads can be connected directly to the dc bus. A grid-connected PV system involves a power source (PV array), a power sink (load), and two power sources/sink (utility and battery), and hence, a power

flow management system is required to balance the power flow among these sources. One such system is developed for selecting the operating mode of the bidirectional converter by sensing the battery voltage. The viability of the scheme has been ascertained by performing experimental studies on a laboratory prototype. The control strategy is digitally implemented on an Altera Cyclone II Field Programmable Gate Array (FPGA) board, and the algorithm is verified for different modes of operation by varying the load. Experimental results are presented to bring out the usefulness of the control strategy.

KEYWORDS:

  1. Bidirectional converter
  2. Dc bus
  3. Photovoltaic
  4. Power flow management system (PMS)

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:

Fig.1.Grid-connected PV system with ac and dc loads.

EXPECTED SIMULATION RESULTS:

 

Fig. 2. Steady-state response. (a) Rectifier mode. (b) Inverter mode.

Fig. 3. Dynamic response for step change in load: (a) AC line current control (iL—0.5 A/div; Vdc—55 V/div; Ppv—100 W/div; io—0.5 A/div). (b) AC line current control (iL—1 A/div; Vdc—55 V/div; Ppv—100 W/div; io—0.5 A/div). (c) Proposed control (iL—1 A/div; Vdc—55 V/div; Ppv—100 W/div; ib—1 A/div; io—1 A/div; Vb—5 V/div). Dynamic response for step change in insolation: (d) AC line current control (iL—0.5 A/div; Vdc—40 V/div; Ppv—100 W/div; io—1 A/div). (e) AC line current control (iL—0.5 A/div; Vdc—40 V/div; Ppv—100 W/div; io—1 A/div). (f) Proposed control (iL—0.5 A/div; Vdc—55 V/div; Ppv—200 W/div; ib—1 A/div; io—1 A/div; Vb—5 V/div). Time: 0.025 s/div.

Fig. 4. Grid failure under (a) inverting mode and (b) rectifier mode. y-axis: Iinv: 4 A/div; Vb: 80 V/div; Ib: 4 A/div; IL: 4 A/div. x-axis: time: 50 s/div.

Fig. 5. Battery voltage, battery current, and dc current waveforms for different cases under automatic power flow control. (a) Case I. (b) Case II. (c) Case III. (d) Case IV. y-axis: Vb: 10 V/div; Ibat: 2 A/div; Iinv: 4 A/div. x-axis: time: 20 s/div.

 CONCLUSION:

A versatile control strategy for power flow management in a grid-connected PV system feeding dc loads has been presented. The importance of the scheme has been brought out by performing experimental studies on a laboratory prototype. The steady-state performance of the converter for different modes of operation has been observed, and near unity power factor has been achieved in both the rectifier and inverter modes. The transient performance of the system for step changes in load and insolation have been also illustrated. The control strategy has been digitally implemented on an Altera Cyclone II FPGA board, and the algorithm has been verified for different modes of operation by varying the load, and a good correlation between the results of computer simulation and experiments has established the validity of the PMS. The significance of the proposed scheme has been demonstrated by its effectiveness in preventing undesirable shuttling of the PV operating point and also in maintaining the THD of the injected grid current within the allowable limit of 5% by setting a minimum current reference for injection. The proposed configuration has been proved to be attractive from the perspective of providing uninterruptible power to dc loads while ensuring the evacuation of excess PV power of high quality into the grid.

REFERENCES:

[1] Yazdani and P. P. Dash, “A control methodology and characterization of dynamics for a photovoltaic system interfaced with a distribution network,” IEEE Trans. Power Del., vol. 24, no. 3, pp. 1538–1551, Jul. 2009.

[2] X. Q. Guo and W. Y. Wu, “Improved current regulation of three-phase grid-connected voltage-source inverters for distributed generation systems,” IET Renew. Power Gener., vol. 4, no. 2, pp. 101–115, Mar. 2010.

[3] H. C. Chiang, T. T. Ma, Y. H. Cheng, J. M. Chang, and W. N. Chang, “Design and implementation of a hybrid regenerative power system combining grid-tie and uninterruptible power supply functions,” IET Renew. Power Gener., vol. 4, no. 1, pp. 85–99, Jan. 2010.

[4] F. Giraud and Z. M. Salameh, “Steady-state performance of a grid connected rooftop hybrid wind–photovoltaic power system with battery storage,” IEEE Trans. Energy. Convers., vol. 16, no. 1, pp. 1–7, Mar. 2001.

[5] J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, E. Galvàn, R. C. P. Guisado, M. A. M. Prats, J. I. León, and N. Moreno-Alfonso, “Power electronic systems for the grid integration of renewable energy sources: A survey,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1002– 1016, Aug. 2006.

 

 

PV BALANCERS: CONCEPT, ARCHITECTURES, AND REALIZATION

 

ABSTRACT:

This paper presents a new concept of module integrated converters called PV balancers for photovoltaic applications. The proposed concept enables independent maximum power point tracking (MPPT) for each module, and dramatically decreases the requirements for power converters. The power rating of a PV balancer is less than 20% of its counterparts, and the manufacturing cost is thus significantly reduced. In this paper, two architectures of PV balancers are proposed, analyzed, realized, and verified through simulation and experimental results. It is anticipated that the proposed approach will be a low-cost solution for future photovoltaic power systems.

 

SOFTWARE: MATLAB/SIMULINK

 

BLOCK DIAGRAM:

Architecture I of PV balancers

(a) Architecture I of PV balancers

Architecture II of PV balancers

(b) Architecture II of PV balancers

Figure 1. Two possible architectures of PV balancers

 

EXPECTED SIMULATION RESULTS:

Output voltages of PV balancers in Architecture I

Figure 2. Output voltages of PV balancers in Architecture I

Output voltages of PV balancers in Architecture II

Figure 3. Output voltages of PV balancers in Architecture II

 

CONCLUSION:

A new concept of module-integrated converters called PV balancers has been proposed and verified in this paper. The proposed concept enables independent maximum power point tracking (MPPT) for each module, and dramatically decreases the requirements for power converters. PV balancers may have a significant economic value for photovoltaic systems in the future. Future work will be focused on power converter optimization, dc bus voltage control, and developing a highly efficient inverter for PV balancers.

REFERENCES:

  1. Kjaer, J. Pedersen and F. Blaabjerg, “A review of single-phase grid-connected inverters for photovoltaic modules,” IEEE Trans. Ind. App., vol. 41, no. 5, pp. 1292-1306, Sept. 2005.
  2. Linares, R. Erickson, S. MacAlpine, and M. Brandemuehl, “Improved energy capture in series string photovoltaic via smart distributed power electronics,” APEC’09, pp. 904-905, 2009.
  3. “Power circuit design for solar magic sm3320,” Application Note AN-2124, National Semiconductor, 2011.
  4. Trubitsyn, B. Pierquet, A. Hayman, G. Gamache, C. Sullivan, and D. Perreault, “High-efficiency inverter for photovoltaic applications,” ECCE’10, pp. 2803-2810, Sept. 2010.
  5. Pierquet, and D. Perreault, “A single-phase photovoltaic inverter topology with a series-connected power buffer,” ECCE’10, pp. 2811- 2818, Sept. 2010.

An Integrated Hybrid Power Supply for Distributed Generation Applications Fed by Nonconventional Energy Sources

ABSTRACT

A new, hybrid integrated topology, fed by photovoltaic (PV) and fuel cell (FC) sources and suitable for distributed generation applications, is proposed. It works as an uninterruptible power source that is able to feed a certain minimum amount of power into the grid under all conditions. PV is used as the primary source of power operating near maximum power point (MPP), with the FC section (block), acting as a current source, feeding only the deficit power. The unique “integrated” approach obviates the need for dedicated communication between the two sources for coordination and eliminates the use of a separate, conventional dc/dc boost converter stage required for PV power processing, resulting in a reduction of the number of devices, components, and sensors. Presence of the FC source in parallel (with the PV source) improves the quality of power fed into the grid by minimizing the voltage dips in the PV output. Another desirable feature is that even a small amount of PV power (e.g., during low insolation), can be fed into the grid. On the other hand, excess power is diverted for auxiliary functions like electrolysis, resulting in an optimal use of the energy sources. The other advantages of the proposed system include low cost, compact structure, and high reliability, which render the system suitable for modular assemblies and “plug-n-play” type applications. All the analytical, simulation results of this research are presented.

 

INDEX TERMS: Buck-boost, distributed generation, fuel cell, grid-connected, hybrid, maximum power point tracking (MPPT), photovoltaic.

 

SOFTWARE: MATLAB/SIMULINK

 

BLOCK DIAGRAM

image001   Fig. 1. Various HDGS configurations. (a) Conventional, multistage topology using two H-bridge inverters [4], [6]. (b) Modified topology with only one H-bridge inverter [4]. (c) Proposed topology. λ denotes solar insolation (Suns).

  

SIMULATION RESULTS

 image002

Fig. 2. Simulation results of the integrated hybrid configuration showing transition from mode III to mode II and then to mode I. T1 and T2 denote the transition between mode III to mode II and mode II to mode I respectively.

image003

Fig. 3. Simulation results of the integrated hybrid configuration operating in electrolysis mode (mode I to mode III and then to mode I). T1 and T2 denote the transition between mode I to mode III and mode III to mode I respectively.

image004

Fig.4. Performance comparison of the proposed HDGS system with and without an FC source in parallel with the PV source.

 

CONCLUSION

A compact topology, suitable for grid-connected applications has been proposed. Its working principle, analysis, and design procedure have been presented. The topology is fed by a hybrid combination of PV and FC sources. PV is the main source, while FC serves as an auxiliary source to compensate for the uncertainties of the PV source. The presence of FC source improves the quality of power (grid current THD, grid voltage profile, etc.) fed into the grid and decreases the time taken to reach theMPP. Table IV compares the system performance with and without the FC block in the system. A good feature of the proposed configuration is that the PV source is directly coupled with the inverter (and not through a dedicated dc–dc converter) and the FC block acts as a current source. Considering that the FC is not a stiff dc source, this facilitates PV operation at MPP over a wide range of solar insolation, leading to an optimal utilization of the energy sources. The efficiency of the proposed system in mode-1 is higher (around 85% to 90%) than mode 2 and 3 (around 80% to 85%).

 

REFERENCES

[1] J. Kabouris and G. C. Contaxis, “Optimum expansion planning of an unconventional generation system operating in parallel with a large scale network,” IEEE Trans. Energy Convers., vol. 6, no. 3, pp. 394–400, Sep. 1991.

[2] P. Chiradeja and R. Ramakumar, “An approach to quantify the technical benefits of distributed generation,” IEEE Trans. Energy Convers., vol. 19, no. 4, pp. 764–773, Dec. 2004.

[3] Y. H. Kim and S. S. Kim, “An electrical modeling and fuzzy logic control of a fuel cell generation system,” IEEE Trans. Energy Convers., vol. 14, no. 2, pp. 239–244, Jun. 1999.

[4] K. N. Reddy and V. Agarwal, “Utility interactive hybrid distributed generation scheme with compensation feature,” IEEE Trans. Energy Convers., vol. 22, no. 3, pp. 666–673, Sep. 2007.

[5] K. S. Tam and S. Rahman, “System performance improvement provided by a power conditioning subsystem for central station photovoltaic fuel cell power plant,” IEEE Trans. Energy Convers., vol. 3, no. 1, pp. 64–70.

 

High-Efficiency MOSFET Transformerless Inverter for Non-isolated Microinverter Applications

ABSTRACT

State-of-the-art low-power-level metal–oxide–semiconductor field-effect transistor (MOSFET)-based transformerless photovoltaic (PV) inverters can achieve high efficiency by using latest super junction MOSFETs. However, these MOSFET-based inverter topologies suffer from one or more of these drawbacks: MOSFET failure risk from body diode reverse recovery, increased conduction losses due to more devices, or low magnetics utilization. By splitting the conventional MOSFET based phase leg with an optimized inductor, this paper proposes a novel MOSFET-based phase leg configuration to minimize these drawbacks. Based on the proposed phase leg configuration, a high efficiency single-phase MOSFET transformerless inverter is presented for the PV microinverter applications. The pulsewidth modulation (PWM) modulation and circuit operation principle are then described. The common-mode and differential-mode voltage model is then presented and analyzed for circuit design. Experimental results of a 250Whardware prototype are shown to demonstrate the merits of the proposed transformerless inverter on non-isolated two-stage PV microinverter application.

 KEYWORDS: Microinverter, MOSFET inverters, photovoltaic (PV) inverter, transformerless inverter.

 SOFTWARE: MATLAB/SIMULINK

 BLOCK DIAGRAM:

image001

Fig. 1. Two-stage nonisolated PV microinverter.

CIRCUIT DIAGRAM:

image002

Fig. 2. Proposed transformerless inverter topology with (a) separated magnetic and (b) integrated magnetics.

 EXPERIMENTAL RESULTS:

image003

Fig. 3. Output voltage and current waveforms.

image004

Fig. 4. PWM gate signals waveforms.

image005

Fig. 5. Inverter splitting inductor current waveform.

image006

Fig. 6. Waveforms of voltage between grid ground and DC ground (VEG ).

CONCLUSION

This paper proposes a MOSFET transformerless inverter with a novel MOSFET-based phase leg, which achieves:

1) high efficiency by using super junction MOSFETs and SiC diodes;

2) minimized risks from the MOSFET phase leg by splitting the MOSFET phase leg with optimized inductor and minimizing the di/dt from MOSFET body diode reverse recovery;

3) high magnetics utilization compared with previous high efficiency MOSFET transformerless inverters in [21], [22], [25], which only have 50% magnetics utilization.

The proposed transformerless inverter has no dead-time requirement, simple PWM modulation for implementation, and minimized high-frequency CMissue. A 250Whardware prototype has been designed, fabricated, and tested in two-stage nonisolated microinverter application. Experimental results demonstrate that the proposed MOSFET transformerless inverter achieves 99.01% peak efficiency at full load condition and 98.8% CEC efficiency and also achieves around 98% magnetic utilization. Due to the advantages of high efficiency, low CM voltage, and improved magnetic utilization, the proposed topology is attractive for two-stage nonisolated PV microinverter applications and transformerless string inverter applications.

 REFERENCES

[1] F. Blaabjerg, Z. Chen, and S. B. Kjaer, “Power electronics as efficient interface in dispersed power generation systems,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1184–1194, Sep. 2004.

[2] S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, “A review of singlephase grid-connected inverters for photovoltaic modules,” IEEE Trans. Ind. Appl., vol. 41, no. 5, p. 1292, Sep. 2005.

[3] Q. Li and P. Wolfs, “A review of the single phase photovoltaic module integrated converter topologies with three different dc link configurations,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1320–1333, May 2008.

[4] Y. Xue, L. Chang, S. B. Kjaer, J. Bordonau, and T. Shimizu, “Topologies of single-phase inverters for small distributed power generators: An overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305–1314, 2004.

[5] W. Yu, J. S. Lai, H. Qian, and C. Hutchens, “High-efficiency MOSFET inverter with H6-type configuration for photovoltaic non-isolated AC-module applications,” IEEE Trans. Power Electron., vol. 56, no. 4, pp. 1253–1260, Apr. 2011.