Integrated Photovoltaic and Dynamic Voltage Restorer System Configuration

ABSTRACT:  

This paper presents a new system structure for integrating a grid-connected photo voltaic (P V) system together with a self-supported dynamic voltage restorer (DVR). The proposed system termed as a “six-port converter,” consists of nine semiconductor switches in total. The proposed configuration retains all the essential features of normal P V and DVR systems while reducing the overall switch count from twelve to nine. In addition, the dual functionality feature significantly enhances the system robustness against severe symmetrical/asymmetrical grid faults and voltage dips. A detailed study on all the possible operational modes of six-port converter is presented. An appropriate control algorithm is developed and the validity of the proposed configuration is verified through extensive simulation as well as experimental studies under different operating conditions.

KEYWORDS:

  1. Bidirectional power flow
  2. Distributed power generation
  3. Photovoltaic (PV) systems
  4. Power quality
  5. Voltage control

 SOFTWARE: MATLAB/SIMULINK

 CIRCUIT DIAGRAM:

 

 Fig. 1. Proposed integrated PV and DVR system configuration.

 EXPECTED SIMULATION RESULTS:

Fig. 2. Simulation results: operation of proposed system during health grid mode (PV-VSI: active and DVR-VSI: inactive). (a) Vpcc; (b) PQload; (c) PQgrid; (d) PQpv-VSI; and (e) PQdvr-VSI.

Fig. 3. Simulation results: operation of proposed system during fault mode (PV-VSI: inactive and DVR-VSI: active). (a) Vpcc; (b) Vdvr; (c) Vload; (d) PQload; (e) PQgrid; (f) PQpv-VSI; and (g) PQdvr-VSI.

Fig. 4. Simulation results: operation of proposed system during balance three phase sag mode (PV-VSI: active and DVR-VSI: active). (a) Vpcc; (b) Vdvr-VSI; (c) Vload; (d) PQgrid; (e) PQpv-VSI; and (f) PQdvr-VSI.

Fig. 5. Simulation results: operation of proposed system during unbalanced sag mode (PV-VSI: active and DVR-VSI: active). (a) Vpcc; (b) Vdvr-vsi; (c) Vload; (d) PQgrid; (e) PQpv-VSI; and (f) PQdvr-VSI.

Fig. 6. Simulation results: operation of proposed system during inactive PV plantmode (PV-VSI: active and DVR-VSI: active). (a) Vpcc; (b) Vload; (c) Vdc; (d) PQload; (e) PQdvr-VSI; and (f) PQpv-VSI.

 CONCLUSION:

 In this paper, a new system configuration for integrating a conventional grid-connected P V system and self supported DVR is proposed. The proposed configuration not only exhibits all the functionalities of existing P V and DVR system, but also enhances the DVR operating range. It allows DVR to utilize active power of P V plant and thus improves the system robustness against sever grid faults. The proposed configuration can operate in different modes based on the grid condition and P V power generation. The discussed modes are healthy grid mode, fault mode, sag mode, and P V inactive mode. The comprehensive simulation study and experimental validation demonstrate the effectiveness of the proposed configuration and its practical feasibility to perform under different operating conditions. The proposed configuration could be very useful for modern load centers where on-site P V generation and strict voltage regulation are required.

REFERENCES:

[1] R. A. Walling, R. Saint, R. C. Dugan, J. Burke, and L. A. Kojovic, “Summary of distributed resources impact on power delivery systems,” IEEE Trans. Power Del., vol. 23, no. 3, pp. 1636–1644, Jul. 2008.

[2] C. Meza, J. J. Negroni, D. Biel, and F. Guinjoan, “Energy-balance modeling and discrete control for single-phase grid-connected PV central inverters,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2734–2743, Jul.2008.

[3] T. Shimizu, O. Hashimoto, and G. Kimura, “A novel high-performance utility-interactive photovoltaic inverter system,” IEEE Trans. Power Electron., vol. 18, no. 2, pp. 704–711, Mar. 2003.

[4] S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, “A review of single-phase grid-connected inverters for photovoltaic modules,” IEEE Trans. Ind.Appl., vol. 41, no. 5, pp. 1292–1306, Sep./Oct. 2005.

[5] T. Esram, J. W. Kimball, P. T. Krein, P. L. Chapman, and P. Midya, m“Dynamic maximum power point tracking of photovoltaic arrays using ripple correlation control,” IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1282–1291, Sep. 2006.

High-Frequency AC-Link PV Inverter

ABSTRACT:

In this paper, a high-frequency ac-link photovoltaic (PV) inverter is proposed. The proposed inverter overcomes most of the problems associated with currently available PV inverters. In this inverter, a single-stage power-conversion unit fulfills all the system requirements, i.e., inverting dc voltage to proper ac, stepping up or down the input voltage, maximum power point tracking, generating low-harmonic ac at the output, and input/output isolation. This inverter is, in fact, a partial resonant ac-link converter in which the link is formed by a parallel inductor/capacitor (LC) pair having alternating current and voltage. Among the significant merits of the proposed inverter are the zero-voltage turn-on and soft turn-off of the switches which result in negligible switching losses and minimum voltage stress on the switches. Hence, the frequency of the link can be as high as permitted by the switches and the processor. The high frequency of operation makes the proposed inverter very compact. The other significant advantage of the proposed inverter is that no bulky electrolytic capacitor exists at the link. Electrolytic capacitors are cited as the most unreliable component in PV inverters, and they are responsible for most of the inverters’ failures, particularly at high temperature. Therefore, substituting dc electrolytic capacitors with ac LC pairs will significantly increase the reliability of PV inverters. A 30-kW prototype was fabricated and tested. The principle of operation and detailed design procedure of the proposed inverter along with the simulation and experimental results are included in this paper. To evaluate the long-term performance of the proposed inverter, three of these inverters were installed at three different commercial facilities in Texas, USA, to support the PV systems. These inverters have been working for several months now.

KEYWORDS:

  1. Inverters
  2. Photovoltaic (PV) systems
  3. Zero voltage switching

SOFTWARE: MATLAB/SIMULINK

CIRCUIT DIAGRAM:

Fig. 1. Proposed PV inverter.

EXPECTED SIMULATION RESULTS:

Fig. 2. PV current and voltage at full power.

 

Fig. 3. AC-side current and voltage at full power.

Fig. 4. Link voltage at full power.

Fig. 5. Link current at full power.

         Fig. 6. Link current and voltage at full power, using 0.1-μF link capacitance.

Fig. 7. Link current and voltage at 15 kW.

Fig. 8. AC-side current and voltage when the irradiance drops from 850 to

650 w/m2.

Fig. 9. AC-side current and voltage when the temperature changes from

25 C to 50 C.

Fig. 10. AC-side current and voltage when the AC-side voltage drops to 10% of its nominal value (at t = 0.016 s).

Fig. 11. PV current and voltage when the AC-side voltage drops to 10% of its nominal value (at t = 0.016 s).

 CONCLUSION:

In this paper, a reliable and compact PV inverter has been proposed. This inverter is a partial resonant ac-link converter in which the link is formed by an LC pair having alternating current and voltage. The proposed converter guarantees the isolation of the input and output. However, if galvanic isolation is required, the link inductance can be replaced by a singlephase high-frequency transformer. The elimination of the dc link and low-frequency transformer makes the proposed inverter more compact and reliable compared with other types of PV inverters. In this paper, the principle of operation of the proposed converter along with the detailed design procedure has been presented. The performance of the proposed converter has been evaluated through both simulation and experimental results.

 REFERENCES:

[1] S. Chakraborty, B. Kramer, and B. Kroposki, “A review of power electronics interfaces for distributed energy systems towards achieving low-cost modular design,” Renew. Sustain. Energy Rev., vol. 13, no. 9, pp. 2323–2335, Dec. 2009.

[2] Y. Huang, F. Z. Peng, J. Wang, and D. W. Yoo, “Survey of the power conditioning system for PV power generation,” in Proc. IEEE PESC, Jun. 18–22, 2006, pp. 1–6.

[3] S. Atcitty, J. E. Granata, M. A. Quinta, and C. A. Tasca, Utility-scale gridtied PV inverter reliability workshop summary report, Sandia National Labs., Albuquerque, NM, USA, SANDIA Rep. SAND2011-4778. [Online].

Available: http://energy.sandia.gov/wp/wp-content/gallery/uploads/  Inverter_Workshop_FINAL_072811.pdf

[4] Y. C. Qin, N. Mohan, R. West, and R. Bonn, Status and needs of power electronics for photovoltaic inverters, Sandia National Labs., Albuquerque, NM, USA, SANDIA Rep. SAND2002-1535. [Online]. Available: www.prod.sandia.gov/techlib/access-control.cgi/2002/021535. pdf

[5] T. Kerekes, R. Teodorescu, P. Rodríguez, G. Vázquez, and E. Aldabas, “A new high-efficiency single-phase transformerless PV inverter topology,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 184–191, Jan. 2011.