**ABSTRACT:**** **

Use of renewable energy and in particular solar energy has brought significant attention over the past decades. Many research works are carried out to analyze and validate the performance of P V modules. Implementation of experimental set up for P V based power system with DC-DC converter to validate the performance of the system is not always possible due to practical constraints. Software based simulation model helps to analyze the performance of P V and a common circuit based model which could be used for validating any commercial P V module will be more helpful.

##### Simulation

of mathematical model for Photo voltaic (P V) module and DC-DC boost converter is presented in this paper. The model presented in this paper can be used as a generalized P V module to analyze the performance of any commercially available P V modules. I-V characteristics and P-V characteristics of P V module under different temperature and irradiation level can be obtained using the model. The design of DC-DC boost converter is also discussed in detail. Simulation of DC-DC converter is performed and the constant DC supply fed converter and P V fed converter generates the results.

** ****BLOCK DIAGRAM:**

Fig. 1 Sim u link Model of proposed system

**EXPECTED SIMULATION RESULTS:**

Fig.2 P WM Pulse generation

Fig. 3(a) Input Voltage of DC-DC Boost Converter

Fig. 4(b) Output Voltage of Boost Converter constant DC input supply

Fig. 5 (c) Output current of Boost Converter constant DC input supply

Fig. 6 (a) Input voltage of P V fed converter

Fig. 7 (b) Output voltage and current waveform of P V fed converter

Fig. 8. Change in irradiation level of P V Module

Fig. 9. Output Voltage and Current wave forms of Boost Converter at

different irradiation level.

**CONCLUSION:**

A circuit based system model of P V modules helps to analyze the performance of commercial P V modules. The commonly used blocks in the form of masked subsystem block develops a general model of P V module. I-V and P-V characteristics outputs are generated for MS X 60 P V module under different irradiation and different temperature levels and the matlab/simulink simulates the module under various conditions as presented in the data sheet. The results obtained from the simulation shows excellent matching with the characteristics graphs provided in the data sheet of the selected models.

##### Thus,

the model can be used to analyze the performance of any commercial P V module. Matlab/Simulink simulates the DC-DC boost converter and the converter generates the results with constant DC input supply and by interconnecting the P V module with it. The results shows close match between the output of converter with constant DC input and the P V fed converter. The P V fed DC-DC boost converter generates the output voltage and current for change of irradiation levels at constant temperature is also presented.

**REFERENCES:**

** **[1] J. A. Go w, C.D.Manning, “ Development of photo voltaic array model for the use in power electronic simulation studies,” I E E Proceedings Electric power applications, Vol. 146, No.2, March,1999.

[2] J e e-H o o n Jung, and S. Ahmed, “Model Construction of Single Crystalline Photo voltaic Panels for Real-time Simulation,” IEEE Energy Conversion Congress & Expo, September 12-16, 2010, Atlanta, USA.

[3] T. F. E l shatter, M. T. E l ha g r y, E. M. Ab o u-E l z a h a b, and A. A. T. Elk o u s y, “Fuzzy modeling of photo voltaic panel equivalent circuit,” in Proc. Conf. Record 28th IEEE Photo voltaic Spec. Conf., pp. 1656– 1659, 2000.

[4] M. Ba l z a n i and A. Re at ti, “Neural network based model of a P V array for the optimum performance of P V system,” in Proc. P h.D. Res. Micro electron. Electron., vol. 2, pp. 123–126, 2005.