Current Control of Three-phase Grid connected PV Inverters using Adaptive PR Controller

ABSTRACT:

In recent years, there has been a rapid increase in the number of grid connected three phase inverter systems being connected to the distribution network. As a result, the need for high quality, low harmonic distortion, and current injection into the grid is essential. To achieve this, careful consideration of the inverter controller is necessary. Many control methods are based on the traditional proportional-integral controller (PI), or the more recently adopted Proportional Resonant controller (PR). This paper presents a new technique of minimizing the error of the current control in a three phase grid connected inverter using a readily implementable Adaptive Proportional Resonance controller. Simulation and experimental results demonstrate the effectiveness of the proposed technique.

 

KEYWORDS:

  1. Proportional Resonant
  2. Grid- connected Inverter
  3. LCL filter.

 

SOFTWARE: MATLAB/SIMULINK

 

BLOCK DIAGRAM:

 Adaptive PR controller in stationary reference control

Fig 1 Adaptive PR controller in stationary reference control

  

EXPECTED SIMULATION RESULTS:

 Simulation result waveforms. (a) Three phase voltage waveform. (b) Three phase current waveform. 

Fig.2 Simulation result waveforms. (a) Three phase voltage waveform. (b) Three phase current waveform.

Simulation waveforms for conventional PR controller. (a) i-alpha. (b) ibeta.

Fig.3 Simulation waveforms for conventional PR controller. (a) i-alpha. (b) ibeta.

. Simulation waveforms for adaptive PR controller. (a) i-alpha. (b) i-beta.

Fig. 4. Simulation waveforms for adaptive PR controller. (a) i-alpha. (b) i-beta.

 Simulation result waveforms unbalanced grid condition. (a) Three phase voltage waveform. (b) Three phase current waveform.

Fig. 5. Simulation result waveforms unbalanced grid condition. (a) Three phase voltage waveform. (b) Three phase current waveform.

   

CONCLUSION:

This paper has considered the impact of an adaptive PR current control scheme of a three phase grid connected inverter. In particular, this work has shown the performance of the adaptive PR controller compared with the conventional PR controller which is popular in grid connected inverters. Simulation studies confirm that the adaptive PR controller demonstrates better performance under normal and abnormal operating conditions. There is no steady state error output, and the harmonic content of the current waveform is very low. In addition, the adaptive PR controller offers superior output power regulation, and improved power quality performance. Overall, it can be concluded that the adaptive PR controller is better suited in the event of grid faults, or operation in weak grid environments, compared to fix gain controllers.

 

REFERENCES:

  • Wuhua and H. Xiangning, “Review of Nonisolated High-Step-Up DC/DC Converters in Photovoltaic Grid-Connected Applications,” Industrial Electronics, IEEE Transactions on, vol. 58, pp. 1239-1250, 2011.
  • Chenlei, R. Xinbo, W. Xuehua, L. Weiwei, P. Donghua, and W. Kailei, “Step-by-Step Controller Design for LCL-Type Grid- Connected Inverter with Capacitor–Current-Feedback Active-Damping,” Power Electronics, IEEE Transactions on, vol.29, pp. 1239-1253, 2014.
  • “IEEE Standard for Interconnecting Distributed Resources With Electric Power Systems,” IEEE Std 1547-2003, 0_1-16, 2003.
  • Nicastri and A. Nagliero, “Comparison and evaluation of the PLL techniques for the design of the grid-connected inverter systems,” in Industrial Electronics (ISIE), 2010 IEEE International Symposium on, 2010, pp. 3865-3870.

  • Related Links
  • Projects List
  • BE/BTech Projects
  • Power Electronics Projects
  • Power Systems Projects
  • Renewable Energy Projects
  • Electric Machines and Drives Projects

Three-phase grid connected PV inverters using the proportional resonance controller

2016 IEEE

ABSTRACT

The development in grid connected three phase inverter has increased the importance of achieving low distortion and high quality current waveform. This paper describes a method of reducing current ripple in a three phase grid connected inverter utilizing Proportional Resonance (PR) controller. The effectiveness of the PR current controller is demonstrated by comparing its performance with that of the Proportional Integral (PI) controller. Simulation and experimental results show that Proportional Resonance (PR) controller achieves better reduction in total harmonic distortion (THD) in the current signal spectrum.

 

KEYWORDS

  1. Grid-connected inverter
  2. LCL filter
  3. PI controller
  4. PR controller.

 

SOFTWARE:MATLAB/SIMULINK

  

BLOCK DIAGRAM:

block diagram

Fig.1. PI controller in synchronous reference scheme.

Fig. 2 PR controller in stationary reference control

SIMULATION RESULTS

Fig.3. The phase grid voltage

Fig.4. The phase current waveform using PI controller

 

Fig.5 The phase current waveform using Proportional resonance  controller

Fig.6. The FFT of the phase current waveform using PI controller

Fig.7. The FFT of the phase current waveform using Proportional Resonance controller

 

CONCLUSION

This paper has considered the impact of the current control scheme of a three-phase grid-connected inverter under normal and abnormal grid conditions using PI and PR controllers. In particular, this work has compared the performance of the industrially accepted PI controller, and the emerging PR controller which is popular in grid connected renewable energy applications. In keeping with the claims of other literature, simulation studies have confirmed that the PR controller shows better performance under normal operating conditions. There is no steady state error output, and the harmonic content of the current waveform is very low. Moreover, in this paper, the effect of grid voltage dips on the performance of the grid connected inverter was considered. Whilst the PI controller demonstrates very good performance, the Proportional Resonance controller offers superior output power regulation, and improved power quality performance. Overall, it suggests that the PR controller is better suited in the event of grid faults, or operation in weak grid environments.

 

REFERENCES

  1. Wuhua and H. Xiangning, “Review of Nonisolated High-Step-Up DC/DC Converters in Photovoltaic Grid-Connected Applications,” IEEE Trans. Ind Electron., vol. 58, pp. 1239-1250, 2011.
  2. Atkinson, G. Pannell, C. Wenping, B. Zahawi, T. Abeyasekera, and M. Jovanovic, “A doubly-fed induction generator test facility for grid fault ride-through analysis,” Instrumentation & Measurement Magazine, IEEE, vol. 15, pp. 20-27, 2012.
  3. Cecati, A. Dell’Aquila, M. Liserre, and V. G. Monopoli, “Design of H-bridge multilevel active rectifier for traction systems,” Industry Applications, IEEE Transactions on, vol. 39, pp. 1541-1550, 2003.
  4. Hassaine, E. Olias, J. Quintero, and V. Salas, “Overview of power inverter topologies and control structures for grid connected photovoltaic systems,” Renewable and Sustainable Energy Reviews, vol. 30, pp. 796-807, 2014.
  5. Nicastri and A. Nagliero, “Comparison and evaluation of the PLL techniques for the design of the grid-connected inverter systems,” in Industrial Electronics (ISIE), 2010 IEEE International Symposium on, 2010, pp. 3865-3870.

Related Links

Latest Projects List

BTech Projects

MTech Projects

 

Top Best Electrical Projects

ELECTRICAL PROJECTS USING MATLAB/SIMULINK
asokatechnologies@gmail.com
ACADEMIC MATLAB SIMULATION PROJECTS FOR
 ELECTRICAL AND ELECTRONICs ENGINEERING[EEE]
 POWER ELECTRONICs AND DRIVES[PED]
 POWER SYSTEMS [PS]….
We Can also Develop Your Own Ideas and Your IEEE Papers With
Extension also…
We also write papers for your projects and give guidance for paper
publishing.
For Further Details Call Us @
0-9347143789/9949240245
Visit us at: www.asokatechnologies.in
For Abstracts of IEEE papers and For Any Queries
Mail us : asokatechnologies@gmail.com

Electrical engineering is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.

Electrical engineering has now subdivided into a wide range of sub fields including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.

Electrical engineers typically hold a degree in electrical engineering or electronic engineering. Practicing engineers may have professional certification and be members of a professional body. Such bodies include the Institute of Electrical and Electronics Engineers (IEEE) and the Institution of Engineering and Technology (professional society) (IET).

Electrical engineers work in a very wide range of industries and the skills required are likewise variable. These range from basic circuit theory to the management skills required of a project manager. The tools and equipment that an individual engineer may need are similarly variable, ranging from a simple voltmeter to a top end analyzer to sophisticated design and manufacturing software.