Energy Management and Control System for Laboratory Scale Microgrid based Wind-PV-Battery

ABSTRACT:  

This paper proposes an energy management and control system for laboratory scale microgrid based on hybrid energy resources such as wind, solar and battery. Power converters and control algorithms have been used along with dedicated energy resources for the efficient operation of the microgrid. The control algorithms are developed to provide power compatibility and energy management between different resources in the microgrid.

It provides stable operation of the control in all microgrid subsystems under various power generation and load conditions. The proposed microgrid, based on hybrid energy resources, operates in autonomous mode and has an open architecture platform for testing multiple different control configurations. Real-time control system has been used to operate and validate the hybrid resources in the microgrid experimentally. The proposed laboratory scale microgrid can be used as a benchmark for future research in smart grid applications.

KEYWORDS:
  1. Wind energy
  2. Solar energy
  3. Conversion
  4. Storage
  5. Hybrid system
  6. Control
  7. Energy management

 SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:

 Fig. 1. Components of the laboratory scale experimental microgrid

 EXPECTED SIMULATION RESULTS:

Fig. 2. Wind turbine-generator speed

Fig. 3. PV module current

Fig. 4. DC-link voltage

Fig. 5. Battery current

Fig. 6. Power at different locations in the microgrid (variable wind power)

Fig. 7. Battery state of charge

Fig. 8. Load Voltage

Fig. 9. Power at different locations in the microgrid (variable wind power)

Fig. 10. Battery current

Fig. 11. Battery state of charge

Fig. 12. DC-bus voltage

Fig. 13. Load Voltage

CONCLUSION:

 A laboratory scale experimental microgrid of distributed renewable energy sources with battery storage and energy management and control system is developed in this paper. The experimental setup is flexible and allows testing difference power electronics interfaces and combinations.

The control software is open source in order to implement different control strategies. This tool contributes to the enhancement of education and research the field of renewable energy and distributed energy systems.

REFERENCES:

[1] A. Bari, J. Jiang, W. Saad and A. Jaekel, “Challenges in the Smart Grid Applications: An Overview,” Int. J. of Distributed Sensor Networks, pp.1–12, 2014.

[2] M. B. Shadmand and R. S. Balog, “Multi-objective optimization and design of photovoltaic-wind hybrid system for community smart DC microgrid,” IEEE Trans. Smart Grid, vol. 5, no. 5, pp. 2635–2643, Sep. 2014.

[3] M. J. Hossain, H. R. Pota, M. A. Mahmud and M. Aldeen, “Robust control for power Sharing in microgrids with low-inertia wind and PV generators,” IEEE Trans. Sustain. Energy, vol. 6, no. 3, pp. 1067–1077, Jul. 2015.

[4] Zaheeruddin and M. Manas, “Renewable energy management through microgrid central controller design: an approach to integrate solar, wind and biomass with battery,” Energy Reports, vol. 1, pp.156–163, 2015.

[5] A. Tani, M. B. Camara and B. Dakyo, “Energy management in the decentralized generation systems based on renewable energy—ultracapacitors and battery to compensate the wind/load power fluctuations,” IEEE Trans. Ind. Appl., vol. 51, no. 2, pp. 1817–1827, 2015.

Grid Connected Wind- Photovoltaic hybrid System

ABSTRACT

 This paper presents a modeling and control strategies of a grid connected Wind-Photo voltaic hybrid system. This proposed system consists of two renewable energy sources in order to increase the system efficiency. The Maximum Power Point Tracking (MP PT) algorithm is applied to the P V system and the wind system to obtain the maximum power for any given external weather conditions. The Field Oriented Control (F O C) controls the generator side converter, moreover this approach is used to control independently the flux and the torque by applying the d- and q-components of the current motor. The Voltage Oriented Control (V O C) strategy controls the utility grid side converter which is adopted to adjust the DC-link at the desired voltage. The simulation results using mat lab software environment prove the good performance of these used techniques so as to generate sinusoidal current wave forms. This current synchronizes with the grid voltage, Moreover, the DC bus voltage is perfectly constant because only the active power is injected into the grid. Simulations are carried out to validate the effectiveness of the proposed system methods.

 

BLOCK DIAGRAM

 

Fig. l.The proposed P V -wind hybrid system

 EXPECTED SIMULATION RESULTS

Fig. 2 Solar i r radiance changes

Fig. 3 The variation of PY arrays current

Fig. 4 The P Y arrays voltage

Fig. 5 The P Y arrays power and reference

Fig. 6 Duty cycle

Fig. 7 Wind speed profile

Fig. 8 Electrical angular speed of the SC I G and its reference

Fig. 9 The active power injected into the grid

Fig. 10 The Reactive power injected into the grid

Fig. 11 The wave forms of the current

Fig. 12 The three phase current and voltage wave forms

Fig. 13. DC link voltage.

CONCLUSION

This paper investigated the Wind-Photo voltaic hybrid system control which included an MP PT method. Different solar irradiation and wind speed environments has been simulated in order to maximize the output power of the proposed system . Two control techniques  improved the hybrid system usefulness. The Field Oriented Control (F O C) controlled the controlled rectifier connected to the squirrel-cage induction generator (SCI G) to reach the optimal rotational speed. The Voltage Oriented Control (V O C) method controlled the grid-side invert er in order to keep the dc-link voltage at the desired value. Mat lab / Sim u link software implemented the hybrid system simulation and its performances proved when the solar i r radiance change or the wind speed occurs.

 

Modeling, Implementation and Performance Analysis of a Grid-Connected Photovoltaic/Wind Hybrid Power System

ABSTRACT:

This paper investigates dynamic modeling, design and control strategy of a grid-connected photovoltaic (PV)/wind hybrid power system. The hybrid power system consists of PV station and wind farm that are integrated through main AC-bus to enhance the system performance. The Maximum Power Point Tracking (MPPT) technique is applied to both PV station and wind farm to extract the maximum power from hybrid power system during variation of the environmental conditions. The modeling and simulation of hybrid power system have been implemented using Matlab/Simulink software. The effectiveness of the MPPT technique and control strategy for the hybrid power system is evaluated during different environmental conditions such as the variations of solar irradiance and wind speed. The simulation results prove the effectiveness of the MPPT technique in extraction the maximum power from hybrid power system during variation of the environmental conditions. Moreover, the hybrid power system operates at unity power factor since the injected current to the electrical grid is in phase with the grid voltage. In addition, the control strategy successfully maintains the grid voltage constant irrespective of the variations of environmental conditions and the injected power from the hybrid power system.

KEYWORDS:

  1. PV
  2. Wind
  3. Hybrid system
  4. Wind turbine
  5. DFIG
  6. MPPT control

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:

Fig. 1. The system configuration of PV/wind hybrid power system.

 EXPECTED SIMULATION RESULTS:

(a) Solar Irradiance.

(b) PV array voltage.

(c) PV array current.

(d) A derivative of power with respect to voltage (dPpv/dVpv).

Fig. 2. Performance of PV array during the variation of solar irradiance.

(a) PV DC-link Voltage.

(b) d-q axis components of injected current from PV station.

(c) Injected active and reactive power from PV station.

(d) Grid voltage and injected current from PV station.

(e) The power factor of the inverter.

(f) Injected current from PV station.

Fig. 3. Performance of PV station during variation of the solar irradiance.

(a) Wind speed profile.

(b) The mechanical torque of wind turbine.

(c) The DC-bus voltage of DFIG.

(d) Injected active and reactive power from the wind farm.

(e) The power factor of the wind farm.

(f) Injected current from the wind farm.

Fig. 4. Performance of wind farm during variation of the wind speed.

(a) Power flow between PV station, wind farm, and hybrid power system.

(b) Injected active and reactive power from the hybrid system.

(c) PCC-bus voltage.

Fig. 5. Performance of hybrid power system at PCC-bus.

 CONCLUSION:

In this paper, a detailed dynamic modeling, design and control strategy of a grid-connected PV/wind hybrid power system has been successfully investigated. The hybrid power system consists of PV station of 1MW rating and a wind farm of 9 MW rating that are integrated through main AC-bus to inject the generated power and enhance the system performance. The incremental conductance MPPT technique is applied for the PV station to extract the maximum power during variation of the solar irradiance. On the other hand, modified MPPT technique based on mechanical power measurement is implemented to capture the maximum power from wind farm during variation of the wind speed. The effectiveness of the MPPT techniques and control strategy for the hybrid power system is evaluated during different environmental conditions such as the variations of solar irradiance and wind speed. The simulation results have proven the validity of the MPPT techniques in extraction the maximum power from hybrid power system during variation of the environmental conditions. Moreover, the hybrid power system successfully operates at unity power factor since the injected reactive power from hybrid power system is equal to zero. Furthermore, the control strategy successfully maintains the grid voltage constant regardless of the variations of environmental conditions and the injected power from the hybrid power system.

REFERENCES:

[1] H. Laabidi and A. Mami, “Grid connected Wind-Photovoltaic hybrid system,” in 2015 5th International Youth Conference on Energy (IYCE), pp. 1-8,2015.

[2] A. B. Oskouei, M. R. Banaei, and M. Sabahi, “Hybrid PV/wind system with quinary asymmetric inverter without increasing DC-link number,” Ain Shams Engineering Journal, vol. 7, pp. 579-592, 2016.

[3] R. Benadli and A. Sellami, “Sliding mode control of a photovoltaic-wind hybrid system,” in 2014 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), pp. 1-8, 2014.

[4] A. Parida and D. Chatterjee, “Cogeneration topology for wind energy conversion system using doubly-fed induction generator,” IET Power Electronics, vol. 9, pp. 1406-1415, 2016.

[5] B. Singh, S. K. Aggarwal, and T. C. Kandpal, “Performance of wind energy conversion system using a doubly fed induction generator for maximum power point tracking,” in Industry Applications Society Annual Meeting (IAS), 2010 IEEE, 2010, pp. 1-7.

 

 MPPT with Single DC–DC Converter and Inverter for Grid-Connected Hybrid Wind-Driven PMSG–PV System

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2015

ABSTRACT: A new topology of a hybrid distributed generator based on photovoltaic and wind-driven permanent magnet synchronous generator is proposed. In this generator, the sources are connected together to the grid with the help of only a single boost converter followed by an inverter. Thus, compared to earlier schemes, the proposed scheme has fewer power converters. A model of the proposed scheme in the d − q-axis reference frame is developed. Two low-cost controllers are also proposed for the new hybrid scheme to separately trigger the dc–dc converter and the inverter for tracking the maximum power from both sources. The integrated operations of both proposed controllers for different conditions are demonstrated through simulation and experimentation. The steady-state performance of the system and the transient response of the controllers are also presented to demonstrate the successful operation of the new hybrid system. Comparisons of experimental and simulation results are given to validate the simulation model.

KEYWORDS:

  1. Grid-connected hybrid system
  2. Hybrid distributed generators (DGs)
  3. Smart grid
  4. Wind-driven PMSG–PV

 SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:

 

Fig. 1. Proposed DG system based on PMSG–PV sources.

EXPECTED SIMULATION RESULTS:

(a)

(b)

Fig. 2. DC link steady-state waveforms. (a) Experimental (voltage—50 V/div, current—10 A/div, and time—500 ms/div). (b) Simulated (voltage—20 V/div, current—5 A/div, and time—500 ms/div.

(a)

(b)

Fig. 3. Steady-state grid voltage and current waveforms. (a) Experimental (voltage—50 V/div, current—10 A/div, and time—20 ms/div). (b) Simulated (voltage—50 V/div, current—5 A/div, and time— 20 ms/div).

Experimental (Voltage 50V/div, Duty-cycle 0.6/div, Time 2s/div)

Simulated (Voltage 20V/div, Duty-cycle 0.5/div, Time 2s/div)

(a) Changes in rectifier output voltage and duty cycle of the boost converter.

Experimental (Voltage 50V/div, Current 10 A/div, Time 2s/div)

Simulated (Voltage 50V/div, Current 10/div)

(b) Changes in dc-link voltage and current

Experimental (Voltage 50V/div, Current 10A/div, Time 2s/div)

Simulated (Voltage 50V/div, Current 10A/div, Time 2s/div)

Fig.4. Transient response for a step change in PMSG shaft speed.. (c) Changes in grid current.

 CONCLUSION:

A new reliable hybrid DG system based on PV and wind driven PMSG as sources, with only a boost converter followed by an inverter stage, has been successfully implemented. The mathematical model developed for the proposed DG scheme has been used to study the system performance in MATLAB. The investigations carried out in a laboratory prototype for different irradiations and PMSG shaft speeds amply confirm the utility of the proposed hybrid generator in zero-net-energy buildings. In addition, it has been established through experimentation and simulation that the two controllers, digital MPPT controller and hysteresis current controller, which are designed specifically for the proposed system, have exactly tracked the maximum powers from both sources. Maintenance-free operation, reliability, and low cost are the features required for the DG employed in secondary distribution systems. It is for this reason that the developed controllers employ very low cost microcontrollers and analog circuitry. Furthermore, the results of the experimental investigations are found to be matching closely with the simulation results, thereby validating the developed model. The steady state waveforms captured at the grid side show that the power generated by the DG system is fed to the grid at unity power factor. The voltage THD and the current THD of the generator meet the required power quality norms recommended by IEEE. The proposed scheme easily finds application for erection at domestic consumer sites in a smart grid scenario.

REFERENCES:

[1] J. Byun, S. Park, B. Kang, I. Hong, and S. Park, “Design and implementation of an intelligent energy saving system based on standby power reduction for a future zero-energy home environment,” IEEE Trans. Consum. Electron., vol. 59, no. 3, pp. 507–514, Oct. 2013.

[2] J. He, Y. W. Li, and F. Blaabjerg, “Flexible microgrid power quality enhancement using adaptive hybrid voltage and current controller,” IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2784–2794, Jun. 2014.

[3] W. Li, X. Ruan, C. Bao, D. Pan, and X. Wang, “Grid synchronization systems of three-phase grid-connected power converters: A complexvector- filter perspective,” IEEE Trans. Ind. Electron., vol. 61, no. 4, pp. 1855–1870, Apr. 2014.

[4] C. Liu, K. T. Chau, and X. Zhang, “An efficient wind-photovoltaic hybrid generation system using doubly excited permanent-magnet brushless machine,” IEEE Trans. Ind. Electron, vol. 57, no. 3, pp. 831–839, Mar. 2010.

[5] S. A. Daniel and N. A. Gounden, “A novel hybrid isolated generating system based on PV fed inverter-assisted wind-driven induction generators,” IEEE Trans. Energy Convers., vol. 19, no. 2, pp. 416–422, Jun. 2004.

Grid-Connected PV-Wind-Battery-Based multi input transformer coupled bidirectional dc-dc converter for household applications

 

ABSTRACT:

 In this paper, a control strategy for power flow management of a grid-connected hybrid photovoltaic (PV)–wind battery- based system with an efficient multi-input transformer coupled bidirectional dc–dc converter is presented. The proposed system aims to satisfy the load demand, manage the power flow from different sources, inject the surplus power into the grid, and charge the battery from the grid as and when required. A transformer-coupled boost half-bridge converter is used to harness power from wind, while a bidirectional buck– boost converter is used to harness power from PV along with battery charging/discharging control. A single-phase full-bridge bidirectional converter is used for feeding ac loads and interaction with the grid. The proposed converter architecture has reduced number of power conversion stages with less component count and reduced losses compared with existing grid-connected hybrid systems. This improves the efficiency and the reliability of the system. Simulation results obtained using MATLAB/Simulink show the performance of the proposed control strategy for power flow management under various modes of operation. The effectiveness of the topology and the efficacy of the proposed control strategy are validated through detailed experimental studies to demonstrate the capability of the system operation in different modes.

 KEYWORDS:

  1. Battery charge control
  2. Bidirectional buck–boost converter
  3. Full-bridge bidirectional converter
  4. Hybrid system
  5. Maximum power-point tracking
  6. Solar photovoltaic (PV)
  7. Transformer-coupled boost dual-half-bridge bidirectional converter
  8. Wind energy

 SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:

image001

Fig. 1. Grid-connected hybrid PV–wind-battery-based system for household applications.

 CIRCUIT DIAGRAM

image002image003

Fig 2. Proposed converter configuration.

 EXPECTED SIMULATION RESULTS:

 image004image005

Fig. 3. Steady-state operation in the MPPT mode.

image006

image007

Fig. 4. Response of the system for changes in an insolation level of source-1 (PV source) during operation in the MPPT mode.

image008

image009

Fig. 5. Response of the system for changes in wind speed level of source-2 (wind source) during operation in the MPPT mode.

image010

image011

Fig. 6. Response of the system in the absence of source-1 (PV source), while source-2 continues to operate at MPPT.

image012

image013

Fig. 7. Response of the system in the absence of source-2 (wind source), while source-1 continues to operate at MPPT.

image014

image015

Fig. 8. Response of the system in the absence of both the sources and charging the battery from the grid.

CONCLUSION:

A grid-connected hybrid PV–wind-battery-based power evacuation scheme for household application is proposed. The proposed hybrid system provides an elegant integration of PV and wind source to extract maximum energy from the two sources. It is realized by a novel multi-input transformer coupled bidirectional dc–dc converter followed by a conventional full-bridge inverter. A versatile control strategy which achieves a better utilization of PV, wind power, battery capacities without effecting life of battery, and power flow management in a grid-connected hybrid PV–wind-battery-based system feeding ac loads is presented. Detailed simulation studies are carried out to ascertain the viability of the scheme. The experimental results obtained are in close agreement with simulations and are supportive in demonstrating the capability of the system to operate either in grid feeding or in stand-alone modes. The proposed configuration is capable of supplying uninterruptible power to ac loads, and ensures the evacuation of surplus PV and wind power into the grid.

 REFERENCES:

[1] F. Valenciaga and P. F. Puleston, “Supervisor control for a stand-alone hybrid generation system using wind and photovoltaic energy,” IEEE Trans. Energy Convers., vol. 20, no. 2, pp. 398–405, Jun. 2005.

[2] C. Liu, K. T. Chau, and X. Zhang, “An efficient wind–photovoltaic hybrid generation system using doubly excited permanent-magnet brushless machine,” IEEE Trans. Ind. Electron., vol. 57, no. 3, pp. 831–839, Mar. 2010.

[3] W. Qi, J. Liu, X. Chen, and P. D. Christofides, “Supervisory predictive control of standalone wind/solar energy generation systems,” IEEE Trans. Control Syst. Technol., vol. 19, no. 1, pp. 199–207, Jan. 2011.

[4] F. Giraud and Z. M. Salameh, “Steady-state performance of a grid connected rooftop hybrid wind-photovoltaic power system with battery storage,” IEEE Trans. Energy Convers., vol. 16, no. 1, pp. 1–7, Mar. 2001.

[5] S.-K. Kim, J.-H. Jeon, C.-H. Cho, J.-B. Ahn, and S.-H. Kwon, “Dynamic modeling and control of a grid-connected hybrid generation system with versatile power transfer,” IEEE Trans. Ind. Electron., vol. 55, no. 4, pp. 1677–1688, Apr. 2008.