High Voltage Direct Current Projects

High Voltage Direct Current projects list

HIGH-VOLTAGE direct current (HVDC) systems have become a viable option for accommodating bulk power transmission over long distance. They can serve as technically feasible solutions for connecting large offshore wind firms located farther than 70 km away from the coast. Furthermore, due to their innate ability to connect asynchronous systems, HVDC technology can also be suitable means for interconnection between different AC systems to improve the security of power supply. A large number of point-to-point HVDC link projects have been launched and already started their commercial operation.

HVDC allows power transmission between unsynchronized AC transmission systems. Since the power flow through an HVDC link can be controlled independently of the phase angle between source and load, it can stabilize a network against disturbances due to rapid changes in power. HVDC also allows transfer of power between grid systems running at different frequencies, such as 50 Hz and 60 Hz. This improves the stability and economy of each grid, by allowing exchange of power between incompatible networks.

read more

High Voltage Direct Current Projects

High Voltage Direct Current

A Two-Level, 48-Pulse Voltage Source Converter for HVDC Systems

ABSTRACT

This paper deals with an analysis, modeling and control of a two level 48-pulse voltage source converter for High Voltage DC (HVDC) system. A set of two-level 6-pulse voltage source converters (VSCs) is used to form a 48-pulse converter operated at fundamental frequency switching (FFS). The performance of the VSC system is improved in terms of reduced harmonics level at FFS and THD (Total Harmonic Distribution) of voltage and current is achieved within the IEEE 519 standard. The performance of the VSC is studied in terms of required reactive power compensation, improved power factor and reduced harmonics distortion. Simulation results are presented for the designed two level multipulse converter to demonstrate its capability. The control algorithm is disused in detail for operating the converter at fundamental frequency switching.

 KEYWORDS

Two-Level Voltage Source Converter

HVDC Systems

Multipulse

Fundamental Frequency Switching

Harmonics.

 SOFTWARE: MATLAB/SIMULINK

 BLOCK DIAGRAM:

1

Fig. 1 A 48-Pulse voltage source converter based HVDC system configuration

 EXPECTED SIMULATION RESULTS:

2

Fig. 2 Steady state performance of proposed 48-pulse voltage source converter

3 4

Fig. 3 Dynamic performance of proposed 48-pulse voltage source converter

 5 6

 Fig. 4 Waveforms and harmonic spectra of 48-pulse converter (a) supply voltage (b) supply current (c) converter voltage

 CONCLUSION

A 48-pulse two-level voltage source converter has been designed, modeled and controlled for back-to-back HVDC system. The transformer connections with appropriate phase shift have been used to realize a 48-pulse converter along with a control scheme using a set of two level six pulse converters. The operation of the designed converter configuration has been simulated and tested in steady sate and transient conditions which have demonstrated the quite satisfactory converter operation. The characteristic harmonics of the system has also improved by the proposed converter configuration.

 REFERENCES

[1] J. Arrillaga, Y. H. Liu and N. R. Waston, “Flexible Power Transmission, The HVDC Options,” John Wiley & Sons, Ltd, Chichester, UK, 2007.

[2] Gunnar Asplund Kjell Eriksson and kjell Svensson, “DC Transmission based on Voltage Source Converter,” in Proc. of CIGRE SC14 Colloquium in South Africa 1997, pp.1-8.

[3] Y. H. Liu R. H. Zhang, J. Arrillaga and N. R. Watson, “An Overview of Self-Commutating Converters and their Application in Transmission and Distribution,” in Conf. IEEE/PES Trans. and Distr.Conf. & Exhibition, Asia and Pacific Dalian, China 2005.

[4] B. R. Anderson, L. Xu, P. Horton and P. Cartwright, “Topology for VSC Transmission,” IEE Power Engineering Journal, vol.16, no.3, pp142- 150, June 2002.

[5] G. D. Breuer and R. L. Hauth, “HVDC’s Increasing Poppularity”, IEEE Potentials, pp.18-21, May 1988.

A New Control Strategy for Active and Reactive Power Control of Three-Level VSC Based HVDC System

ABSTRACT

This paper presents a new control strategy for real and reactive power control of three-level multipulse voltage source converter based High Voltage DC (HVDC) transmission system operating at Fundamental Frequency Switching (FFS). A three-level voltage source converter replaces the conventional two-level VSC and it is designed for the real and reactive power control is all four quadrants operation. A new control method is developed for achieving the reactive power control by varying the pulse width and by keeping the dc link voltage constant. The steady state and dynamic performances of HVDC system interconnecting two different frequencies network are demonstrated for active and reactive powers control. Total numbers of transformers used in the system are reduced in comparison to two level VSCs. The performance of the HVDC system is also improved in terms of reduced harmonics level even at fundamental frequency switching.

 KEYWORDS 

  1. HVDC
  2. Voltage Source Converter
  3. Multilevel
  4. Multipulse
  5. Dead Angle (β)

 SOFTWARE:  MATLAB/SIMULINK

BLOCK DIAGRAM: 1

Fig. 1 A three-level 24-Pulse voltage source converter based HVDC system

 

CONTROL SCHEME

2

Fig. 2 Control scheme of three-level VSC based HVDC system using dynamic dead angle (β) Control

EXPECTED SIMULATION RESULTS

3

Fig. 3 Performance of rectifier station during simultaneous real and reactive power control of three-level 24-pulse VSC based HVDC system

4

Fig. 4 Performance of inverter station during simultaneous real and reactive power control of three-level 24-pulse VSC based HVDC system

5

Fig. 5 Variation of angles (δ) and (β) values of three-level 24-pulse VSC based HVDC system during simultaneous real and reactive power control

CONCLUSION

A new control method for three-level 24-pulse voltage source converter configuration has been designed for HVDC system. The performance of this 24-pulse VSC based HVDC system using the control method has been demonstrated in active power control in bidirectional, independent control of the reactive power and power quality improvement. A new dynamic dead angle (β) control has been introduced for three-level voltage source converter operating at fundamental frequency switching. In this control the HVDC system operation is successfully demonstrated and also an analysis of (β) value for various reactive power requirement and harmonic performance has been carried out in detail. Therefore, the selection of converter operation region is more flexible according to the requirement of the reactive power and power quality.

REFERENCES

[1] Gunnar Asplund, Kjell Eriksson and kjell Svensson, “DC Transmission based on Voltage Source Converters,” in Proc. Of CIGRE SC14 Colloquium in South Africa 1997, pp.1-7.

[2] “HVDC Light DC Transmission based on Voltage Source Converter,” ABB Review Manual 1998, pp. 4-9.

[3] Xiao Wang and Boon-Tech Ooi, “High Voltage Direct Current Transmission System Based on Voltage Source Converter,” in IEEEPESC’ 90 Record, vol.1, pp.325-332.

[4] Michael P. Bahrman, Jan G. Johansson and Bo A. Nilsson, “Voltage Source Converter Transmission Technologies-The Right Fit for the Applications,” in Proc. of IEEE-PES General Meeting, Toronto, Canada, July-2003, pp.1840-1847.

[5] Y. H. Liu R. H. Zhang, J. Arrillaga and N. R. Watson, “An Overview of Self-Commutating Converters and their Application in Transmission and Distribution,” in Conf. Proc of IEEE/PES T & DConf. & Exhibition, Asia and Pacific Dalian, China 2005, pp.1-7.