Three-phase grid connected PV inverters using the proportional resonance controller

2016 IEEE

ABSTRACT

The development in grid connected three phase inverter has increased the importance of achieving low distortion and high quality current waveform. This paper describes a method of reducing current ripple in a three phase grid connected inverter utilizing Proportional Resonance (PR) controller. The effectiveness of the PR current controller is demonstrated by comparing its performance with that of the Proportional Integral (PI) controller. Simulation and experimental results show that Proportional Resonance (PR) controller achieves better reduction in total harmonic distortion (THD) in the current signal spectrum.

 

KEYWORDS

  1. Grid-connected inverter
  2. LCL filter
  3. PI controller
  4. PR controller.

 

SOFTWARE:MATLAB/SIMULINK

  

BLOCK DIAGRAM:

block diagram

Fig.1. PI controller in synchronous reference scheme.

Fig. 2 PR controller in stationary reference control

SIMULATION RESULTS

Fig.3. The phase grid voltage

Fig.4. The phase current waveform using PI controller

 

Fig.5 The phase current waveform using Proportional resonance  controller

Fig.6. The FFT of the phase current waveform using PI controller

Fig.7. The FFT of the phase current waveform using Proportional Resonance controller

 

CONCLUSION

This paper has considered the impact of the current control scheme of a three-phase grid-connected inverter under normal and abnormal grid conditions using PI and PR controllers. In particular, this work has compared the performance of the industrially accepted PI controller, and the emerging PR controller which is popular in grid connected renewable energy applications. In keeping with the claims of other literature, simulation studies have confirmed that the PR controller shows better performance under normal operating conditions. There is no steady state error output, and the harmonic content of the current waveform is very low. Moreover, in this paper, the effect of grid voltage dips on the performance of the grid connected inverter was considered. Whilst the PI controller demonstrates very good performance, the Proportional Resonance controller offers superior output power regulation, and improved power quality performance. Overall, it suggests that the PR controller is better suited in the event of grid faults, or operation in weak grid environments.

 

REFERENCES

  1. Wuhua and H. Xiangning, “Review of Nonisolated High-Step-Up DC/DC Converters in Photovoltaic Grid-Connected Applications,” IEEE Trans. Ind Electron., vol. 58, pp. 1239-1250, 2011.
  2. Atkinson, G. Pannell, C. Wenping, B. Zahawi, T. Abeyasekera, and M. Jovanovic, “A doubly-fed induction generator test facility for grid fault ride-through analysis,” Instrumentation & Measurement Magazine, IEEE, vol. 15, pp. 20-27, 2012.
  3. Cecati, A. Dell’Aquila, M. Liserre, and V. G. Monopoli, “Design of H-bridge multilevel active rectifier for traction systems,” Industry Applications, IEEE Transactions on, vol. 39, pp. 1541-1550, 2003.
  4. Hassaine, E. Olias, J. Quintero, and V. Salas, “Overview of power inverter topologies and control structures for grid connected photovoltaic systems,” Renewable and Sustainable Energy Reviews, vol. 30, pp. 796-807, 2014.
  5. Nicastri and A. Nagliero, “Comparison and evaluation of the PLL techniques for the design of the grid-connected inverter systems,” in Industrial Electronics (ISIE), 2010 IEEE International Symposium on, 2010, pp. 3865-3870.

Related Links

Latest Projects List

BTech Projects

MTech Projects

 

Final Year Projects for BTech/MTech using Matlab/Simulink in rangareddy

Final Year Projects for BTech/MTech using Matlab/Simulink in rangareddy.

Software Used: Matlab/Simulink
Areas : Power Electronics and Drives, Power Systems, Renewable Energy and sources, etc
Download
Contact us:
email: asokatechnologies@gmail.com
website: www.asokatechnologies.in
Asoka technologies provide Final Year Projects for BTech/MTech using Matlab/Simulink in rangareddy

Final Year Projects ELECTRICAL ENGINEERING is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.

Electrical engineering has now subdivided into a wide range of sub fields including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.
Final Year Projects POWER ELECTRONICS is the application of solid-state electronics to the control and conversion of electric power. The first high power electronic devices were mercury-arc valves. In modern systems the conversion is performed with semiconductor switching devices such as diodes, thyristors and transistors, pioneered by R. D. Middlebrook and others beginning in the 1950s. In contrast to electronic systems concerned with transmission and processing of signals and data, in power electronics substantial amounts of electrical energy are processed. An AC/DC converter (rectifier) is the most typical power electronics device found in many consumer electronic devices, e.g. television sets, personal computers, battery chargers, etc. The power range is typically from tens of watts to several hundred watts. In industry a common application is the variable speed drive (VSD) that is used to control an induction motor. The power range of VSDs start from a few hundred watts and end at tens of megawatts.

Final Year Projects

Renewable Energy and Systems Projects for MTech using Matlab/Simulink in yadadri bhuvangiri

Renewable Energy and Systems Projects for MTech using Matlab/Simulink in yadadri bhuvangiri.

Software Used: Matlab/Simulink
Areas : Power Electronics and Drives, Power Systems, Renewable Energy and sources, etc
Download
Contact us:
email: asokatechnologies@gmail.com
website: www.asokatechnologies.in
Asoka technologies provide Power Electronics, Power Systems Projects for MTech using Matlab/Simulink in yadadri bhuvangiri.

ELECTRICAL ENGINEERING is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.
Electrical engineering has now subdivided into a wide range of sub fields including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.
POWER ELECTRONICS is the application of solid-state electronics to the control and conversion of electric power. The first high power electronic devices were mercury-arc valves. In modern systems the conversion is performed with semiconductor switching devices such as diodes, thyristors and transistors, pioneered by R. D. Middlebrook and others beginning in the 1950s. In contrast to electronic systems concerned with transmission and processing of signals and data, in power electronics substantial amounts of electrical energy are processed. An AC/DC converter (rectifier) is the most typical power electronics device found in many consumer electronic devices, e.g. television sets, personal computers, battery chargers, etc. The power range is typically from tens of watts to several hundred watts. In industry a common application is the variable speed drive (VSD) that is used to control an induction motor. The power range of VSDs start from a few hundred watts and end at tens of megawatts.

Renewable Energy and Systems Projects for MTech using Matlab/Simulink in siddipet

Renewable Energy and Systems Projects for MTech using Matlab/Simulink in siddipet.

Software Used: Matlab/Simulink
Areas : Power Electronics and Drives, Power Systems, Renewable Energy and sources, etc
Download
Contact us:
email: asokatechnologies@gmail.com
website: www.asokatechnologies.in
Asoka technologies provide Power Electronics, Power Systems Projects for MTechusing Matlab/Simulink in siddipet.

ELECTRICAL ENGINEERING is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.
Electrical engineering has now subdivided into a wide range of sub fields including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.
POWER ELECTRONICS is the application of solid-state electronics to the control and conversion of electric power. The first high power electronic devices were mercury-arc valves. In modern systems the conversion is performed with semiconductor switching devices such as diodes, thyristors and transistors, pioneered by R. D. Middlebrook and others beginning in the 1950s. In contrast to electronic systems concerned with transmission and processing of signals and data, in power electronics substantial amounts of electrical energy are processed. An AC/DC converter (rectifier) is the most typical power electronics device found in many consumer electronic devices, e.g. television sets, personal computers, battery chargers, etc. The power range is typically from tens of watts to several hundred watts. In industry a common application is the variable speed drive (VSD) that is used to control an induction motor. The power range of VSDs start from a few hundred watts and end at tens of megawatts.

Major Electrical Projects for BTech/MTech using Matlab/Simulink in warangal

Major Electrical Projects for BTech/MTech using Matlab/Simulink in warangal. 
Software Used: Matlab/Simulink
Areas : Power Electronics and Drives, Power Systems, Renewable Energy and sources, etc
Download
Contact us:
email: asokatechnologies@gmail.com
website: www.asokatechnologies.in
Asoka technologies provide Latest Electrical projects for BTech/MTech using Matlab/Simulink in warangal.
ELECTRICAL ENGINEERING is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.
Electrical engineering has now subdivided into a wide range of sub fields including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.

Latest Electrical projects for BTech/MTech using Matlab/Simulink in nizamabad

Latest Electrical projects for BTech/MTech using Matlab/Simulink in nizamabad. 
Software Used: Matlab/Simulink
Areas : Power Electronics and Drives, Power Systems, Renewable Energy and sources, etc
Download
Contact us:
email: asokatechnologies@gmail.com
website: www.asokatechnologies.in
Asoka technologies provide Latest Electrical projects for BTech/MTech using Matlab/Simulink in nizamabad.
ELECTRICAL ENGINEERING is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.
Electrical engineering has now subdivided into a wide range of sub fields including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.

projects BTech EEE using Matlab/Simulink in nalgonda

projects BTech EEE using Matlab/Simulink  in nalgonda. 

Software Used: Matlab/Simulink
Areas : Power Electronics and Drives, Power Systems, Renewable Energy and sources, etc
Download
Contact us:
email: asokatechnologies@gmail.com
website: www.asokatechnologies.in
Asoka technologies provide projects BTech EEE  using Matlab/Simulink in nalgonda.
ELECTRICAL ENGINEERING is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.
Electrical engineering has now subdivided into a wide range of sub fields including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.

EEE is a standout amongst the most requested branches in building. Numerous open doors are in their profession as who participated in these branches. Each building understudy gets their endorsement after finishing of his venture effectively in conclusive year. They have numerous options in choosing the undertakings, for example, sensor,  microcontroller. For their expectation, we have recorded here an expansive number of B. Tech ventures thoughts. These are particularly gathered for EEE understudies. EEE alludes to Electrical and Electronics Engineering. These days the greater part of the understudies demonstrating enthusiasm to participate in this branch to finish their B.Tech effectively and to assemble great vocation in future. In EEE, they can learn distinctive ideas on gadgets and finish their venture in conclusive year. A large number of them attempt to do imaginative and creative tasks. Some of them additionally attempt to do the undertakings which might be useful, in actuality.

final year electrical projects

m.tech eee in ieee electrical projects in nagar kurnool

m.tech eee in ieee electrical projects in nagar kurnool. 
Software Used: Matlab/Simulink
Areas : Power Electronics and Drives, Power Systems, Renewable Energy and sources, etc
Download
Contact us:
email: asokatechnologies@gmail.com
website: www.asokatechnologies.in
Asoka technologies provide Academic Electrical Projects nagar kurnool.
ELECTRICAL ENGINEERING is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.
Electrical engineering has now subdivided into a wide range of sub fields including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.

List of Electrical Engineering Projects

AT01 An Integrated Boost Resonant Converter for Photovoltaic Applications 2013-14 IEEE
AT02 Bridgeless SEPIC Converter With a Ripple-Free Input Current 2013-14 IEEE
AT03 An Advanced Power Electronics Interface for Electric Vehicles Applications 2013-14 IEEE
AT04 A High-Efficiency Solar Array Simulator Implemented by an LLC Resonant DC–DC Converter 2013-14 IEEE
AT05 A Novel Reduced Switching Loss Bidirectional AC/DC Converter PWM Strategy with Feed-Forward Control for Grid-Tied Micro Grid Systems 2013-14 IEEE
AT06 Coordinated Control and Energy Management of Distributed Generation Inverters in a Microgrid 2013-14 IEEE
AT07 A New ZVS DC/DC Converter With Three APWM Circuits 2013-14 IEEE
AT08 Analysis and Implementation of a Single Stage Flyback PV-Micro Inverter with Soft Switching 2013-14 IEEE
AT09 A Bridgeless Boost Rectifier for Low-Voltage Energy Harvesting Applications 2013-14 IEEE

Electrical engineering is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.

Electrical engineering has now subdivided into a wide range of sub fields including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.

Electrical engineers typically hold a degree in electrical engineering or electronic engineering. Practicing engineers may have professional certification and be members of a professional body. Such bodies include the Institute of Electrical and Electronics Engineers (IEEE) and the Institution of Engineering and Technology (professional society) (IET).

Electrical engineers work in a very wide range of industries and the skills required are likewise variable. These range from basic circuit theory to the management skills required of a project manager. The tools and equipment that an individual engineer may need are similarly variable, ranging from a simple voltmeter to a top end analyzer to sophisticated design and manufacturing software.

 

Major Projects for Electrical Engineering

AT16-01 Generation of Higher Number of Voltage Levels by stacking inverters of lower multilevel structure with low voltage devices for drives 2016 IEEE
AT16-02 A Novel Multilevel Multi-Output Bidirectional Active Buck PFC Rectifier 2016 IEEE
AT16-03 Optimal Pulse width Modulation of Medium-Voltage Modular Multilevel Converter 2016 IEEE
AT16-04 Novel Family of Single-Phase Modified Impedance-Source Buck-Boost Multilevel Inverters with Reduced Switch Count 2016 IEEE
AT16-05 Adaptive Neuro Fuzzy Inference System Least Mean Square Based Control Algorithm for DSTATCOM 2016 IEEE
AT16-06 An Islanding Detection Method for Inverter-Based Distributed Generators Based on the Reactive Power Disturbance 2016 IEEE
AT16-07 Quasi-Z-Source Inverter With a T-Type Converter in Normal and Failure Mode 2016 IEEE
AT16-08 Real-Time Implementation of Model Predictive Control on 7-Level Packed U-Cell Inverter 2016 IEEE
AT16-09 High frequency inverter topologies integrated with the coupled inductor bridge arm 2016 IET

and so on………

Electrical engineering is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.

Electrical engineering has now subdivided into a wide range of sub fields including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.

Electrical engineers typically hold a degree in electrical engineering or electronic engineering. Practicing engineers may have professional certification and be members of a professional body. Such bodies include the Institute of Electrical and Electronics Engineers (IEEE) and the Institution of Engineering and Technology (professional society) (IET).

Electrical engineers work in a very wide range of industries and the skills required are likewise variable. These range from basic circuit theory to the management skills required of a project manager. The tools and equipment that an individual engineer may need are similarly variable, ranging from a simple voltmeter to a top end analyzer to sophisticated design and manufacturing software.