Integrated Photovoltaic and Dynamic Voltage Restorer System Configuration

ABSTRACT:  

This paper presents a new system structure for integrating a grid-connected photo voltaic (P V) system together with a self-supported dynamic voltage restorer (DVR). The proposed system termed as a “six-port converter,” consists of nine semiconductor switches in total. The proposed configuration retains all the essential features of normal P V and DVR systems while reducing the overall switch count from twelve to nine. In addition, the dual functionality feature significantly enhances the system robustness against severe symmetrical/asymmetrical grid faults and voltage dips. A detailed study on all the possible operational modes of six-port converter is presented. An appropriate control algorithm is developed and the validity of the proposed configuration is verified through extensive simulation as well as experimental studies under different operating conditions.

KEYWORDS:

  1. Bidirectional power flow
  2. Distributed power generation
  3. Photovoltaic (PV) systems
  4. Power quality
  5. Voltage control

 SOFTWARE: MATLAB/SIMULINK

 CIRCUIT DIAGRAM:

 

 Fig. 1. Proposed integrated PV and DVR system configuration.

 EXPECTED SIMULATION RESULTS:

Fig. 2. Simulation results: operation of proposed system during health grid mode (PV-VSI: active and DVR-VSI: inactive). (a) Vpcc; (b) PQload; (c) PQgrid; (d) PQpv-VSI; and (e) PQdvr-VSI.

Fig. 3. Simulation results: operation of proposed system during fault mode (PV-VSI: inactive and DVR-VSI: active). (a) Vpcc; (b) Vdvr; (c) Vload; (d) PQload; (e) PQgrid; (f) PQpv-VSI; and (g) PQdvr-VSI.

Fig. 4. Simulation results: operation of proposed system during balance three phase sag mode (PV-VSI: active and DVR-VSI: active). (a) Vpcc; (b) Vdvr-VSI; (c) Vload; (d) PQgrid; (e) PQpv-VSI; and (f) PQdvr-VSI.

Fig. 5. Simulation results: operation of proposed system during unbalanced sag mode (PV-VSI: active and DVR-VSI: active). (a) Vpcc; (b) Vdvr-vsi; (c) Vload; (d) PQgrid; (e) PQpv-VSI; and (f) PQdvr-VSI.

Fig. 6. Simulation results: operation of proposed system during inactive PV plantmode (PV-VSI: active and DVR-VSI: active). (a) Vpcc; (b) Vload; (c) Vdc; (d) PQload; (e) PQdvr-VSI; and (f) PQpv-VSI.

 CONCLUSION:

 In this paper, a new system configuration for integrating a conventional grid-connected P V system and self supported DVR is proposed. The proposed configuration not only exhibits all the functionalities of existing P V and DVR system, but also enhances the DVR operating range. It allows DVR to utilize active power of P V plant and thus improves the system robustness against sever grid faults. The proposed configuration can operate in different modes based on the grid condition and P V power generation. The discussed modes are healthy grid mode, fault mode, sag mode, and P V inactive mode. The comprehensive simulation study and experimental validation demonstrate the effectiveness of the proposed configuration and its practical feasibility to perform under different operating conditions. The proposed configuration could be very useful for modern load centers where on-site P V generation and strict voltage regulation are required.

REFERENCES:

[1] R. A. Walling, R. Saint, R. C. Dugan, J. Burke, and L. A. Kojovic, “Summary of distributed resources impact on power delivery systems,” IEEE Trans. Power Del., vol. 23, no. 3, pp. 1636–1644, Jul. 2008.

[2] C. Meza, J. J. Negroni, D. Biel, and F. Guinjoan, “Energy-balance modeling and discrete control for single-phase grid-connected PV central inverters,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2734–2743, Jul.2008.

[3] T. Shimizu, O. Hashimoto, and G. Kimura, “A novel high-performance utility-interactive photovoltaic inverter system,” IEEE Trans. Power Electron., vol. 18, no. 2, pp. 704–711, Mar. 2003.

[4] S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, “A review of single-phase grid-connected inverters for photovoltaic modules,” IEEE Trans. Ind.Appl., vol. 41, no. 5, pp. 1292–1306, Sep./Oct. 2005.

[5] T. Esram, J. W. Kimball, P. T. Krein, P. L. Chapman, and P. Midya, m“Dynamic maximum power point tracking of photovoltaic arrays using ripple correlation control,” IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1282–1291, Sep. 2006.

Modelling, Design, Control, and Implementation of a Modified Z-source Integrated PV/Grid/EVDC Charger/Inverter

ABSTRACT:

Solar Energy has been the most popular sources of renewable energy for residential and semi commercial applications. Fluctuations of solar energy harvested due to atmospheric conditions can be mitigated through energy storage systems. Solar energy can also be used to charge electric vehicle batteries to reduce the dependency on the grid. One of the requirements for a converter for such applications is to have a reduced number of conversion stages and provide isolation. Z-source inverter (ZSI) topology is able to remove multiple stages and achieve voltage boost and DC-AC power conversion in a single stage. The use of passive components also presents an opportunity to integrate energy storage systems (ESS) into them. This paper presents modeling, design and operation of a modified Z-source inverter (MZSI) integrated with a split primary isolated battery charger for DC charging of electric vehicles (EV) batteries. Simulation and experimental results have been presented for the proof of concept of the operation of the proposed converter.

KEYWORDS:

  1. Z-source-inverters
  2. Active filter
  3. Energy storage
  4. Photovoltaic (PV) power generation
  5. Quasi-Zsource inverter (qZSI)
  6. Single-phase systems
  7. Transportation electrification
  8. Solar energy
  9. Distributed power generation
  10. Inverter

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:

 

Fig. 1. Simplified Block Diagram of the System

 EXPECTED SIMULATION RESULTS

 

Fig. 2. Simulation Waveform of the grid current,Ig, DC link voltage,VPN, Capacitor Voltage,VC1, and Battery current,ib for the power balance between the Photovoltaic input power, the AC Grid side and the battery power.

Fig. 3. Simulation Waveform for the power balance between the Photovoltaic input power, the AC Grid side and the battery power.

CONCLUSION:

A modified ZSI topology has been proposed in this paper is an attractive solution for photovoltaic grid connected charging systems. It consist of a single stage photovoltaic grid (PV-Grid) connection and an integrated charger for PV-Grid connected charging or energy storage. This topology can be applied to centralized configuration for charging in semi-commercial locations such as a parking lot of a shopping mall. For residential applications, this idea can be extended to string inverters with the charger side of the string inverter configurations connected in series or parallel for current sharing. The paper proposes a an energy storage topology using Z source converter through symmetrical operation of its impedance network.

REFERENCES:

[1] D. Aggeler, F. Canales, H. Zelaya, D. L. Parra, A. Coccia N. Butcher, and O. Apeldoorn, “Ultra-fast dc-charge infrastructures for ev-mobility and future smart grids,” in Proc. of IEEE PES Innovative Smart Grid Technologies Conference Europe, pp. 1–8, Oct. 2010.

[2] G. Carli and S. S. Williamson, “Technical considerations on power conversion for electric and plug-in hybrid electric vehicle battery charging in photovoltaic installations,” IEEE Trans. on Ind. Electron., vol. 28, no. 12, pp. 5784–5792, 2013.

[3] J. G. Ingersoll and C. A. Perkins, “The 2.1 kw photovoltaic electric vehicle charging station in the city of santa monica, california,” in Proc. of the Twenty Fifth IEEE Photovoltaic Specialists Conference, pp. 1509– 1512, May. 1996.

[4] S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, “A review of single-phase grid-connected inverters for photovoltaic modules,” IEEE Trans. on Ind. Appl., vol. 41, no. 5, pp. 1292–1306, Sep. 2005.

[5] N. A. Ninad, L. A. C. Lopes, and I. S. Member, “Operation of Single-phase Grid-Connected Inverters with Large DC Bus Voltage Ripple,” Proc. of the IEEE Canada Electrical Power Conference, 2007.

 

 

Control for Grid-Connected and Intentional Islanding Operations of Distributed Power Generation

ABSTRACT:

Intentional islanding describes the condition in which a microgrid or a portion of the power grid, which consists of a load and a distributed generation (DG) system, is isolated from the remainder of the utility system. In this situation, it is important for the microgrid to continue to provide adequate power to the load. Under normal operation, each DG inverter system in the microgrid usually works in constant current control mode in order to provide a preset power to the main grid. When the microgrid is cut off from the main grid, each DG inverter system must detect this islanding situation and must switch to a voltage control mode. In this mode, the microgrid will provide a constant voltage to the local load. This paper describes a control strategy that is used to implement grid-connected and intentional-islanding operations of distributed power generation. This paper proposes an intelligent load-shedding algorithm for intentional islanding and an algorithm of synchronization for grid reconnection.

 

KEYWORDS:

  1. Distributed generation (DG)
  2. Grid-connected operation
  3. Intentional-islanding operation
  4. Islanding detection
  5. Load shedding
  6. Synchronization

 

SOFTWARE: MATLAB/SIMULINK

 

BLOCK DIAGRAM:

grid connected  

Fig. 1. Schematic diagram of the grid connected inverter system.

 

EXPECTED SIMULATION RESULTS:

grid-connected to intentional-islanding operation.

Fig. 2. From grid-connected to intentional-islanding operation.

Synchronization for grid reconnection.
Fig. 3. Synchronization for grid reconnection.

Phase voltage (top) without and (bottom) with the synchronization algorithm.

Fig. 4. Phase voltage (top) without and (bottom) with the synchronization algorithm.


Fig. 5. Phase voltage
Va without the load-shedding algorithm.

Phase voltage Va with the load-shedding algorithm

Fig. 6.Phase voltage Va with the load-shedding algorithm.

CONCLUSION:

 Through this paper, the control, islanding detection, load shedding, and reclosure algorithms have been proposed for the operation of grid-connected and intentional-islanding DGs. A controller was designed with two interface controls: one for grid connected operation and the other for intentional islanding operation. An islanding-detection algorithm, which was responsible for the switch between the two controllers, was presented. The simulation results showed that the detection algorithm can distinguish between islanding events and changes in the loads and can apply the load-shedding algorithms when needed. The reclosure algorithm causes the DG to resynchronize itself with the grid. In addition, it is shown that the response of the proposed control schemes is capable of maintaining the voltages and currents within permissible levels during grid connected and islanding operation modes. The experimental results showed that the proposed control schemes are capable of maintaining the voltages within the standard permissible levels during grid connected and islanding operation modes. In addition, it was shown that the reclosure algorithm causes the DG to resynchronize itself with the grid.

 

REFERENCES:

  • Jayaweera, S. Galloway, G. Burt, and J. R. McDonald, “A sampling approach for intentional islanding of distributed generation,” IEEE Trans. Power Syst., vol. 22, no. 2, pp. 514– 521, May 2007.
  • M. Guerrero, J. C. Vásquez, J. Matas, M. Castilla, and L. García de Vicuña, “Control strategy for flexible microgrid based on parallel lineinteractive UPS systems,” IEEE Trans. Ind. Electron., vol. 56, no. 3, pp. 726–736, Mar. 2009.
  • Fuangfoo, T. Meenual,W.-J. Lee, and C. Chompoo-inwai, “PEA guidelines for impact study and operation of DG for islanding operation,” IEEE Trans. Ind. Appl., vol. 44, no. 5, pp. 1348–1353, Sep./Oct. 2008. 156 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 58, NO. 1, JANUARY 2011
  • Carpaneto, G. Chicco, and A. Prunotto, “Reliability of reconfigurable distribution systems including distributed generation,” in Proc. Int. Conf. PMAPS, 2006, pp. 1–6.
  • IEEE Recommended Practice for Utility Interface of Photovoltaic (PV) Systems, IEEE Std 929-2000, 2000, p. i.

Integrated Photovoltaic and Dynamic Voltage Restorer System Configuration

 

IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2015

ABSTRACT:

This paper presents a new system configuration for integrating a grid-connected photovoltaic (PV) system together with a self-supported dynamic voltage restorer (DVR). The proposed system termed as a “six-port converter,” consists of nine semiconductor switches in total. The proposed configuration retains all the essential features of normal PV and DVR systems while reducing the overall switch count from twelve to nine. In addition, the dual functionality feature significantly enhances the system robustness against severe symmetrical/asymmetrical grid faults and voltage dips. A detailed study on all the possible operational modes of six-port converter is presented. An appropriate control algorithm is developed and the validity of the proposed configuration is verified through extensive simulation studies under different operating conditions.

 

KEYWORDS:

  1. Bidirectional power flow
  2. Distributed power generation
  3. Photovoltaic (PV) systems
  4. Power quality
  5. Voltage control

 

SOFTWARE: MATLAB/SIMULINK

 

BLOCK DIAGRAM:

 

Fig. 1. Proposed integrated PV and DVR system configuration.

 

 EXPECTED SIMULATION RESULTS:

 

Fig. 2. Simulation results: operation of proposed system during health grid mode (PV-VSI: active and DVR-VSI: inactive). (a) Vpcc; (b) PQload; (c) PQgrid; (d) PQpv-VSI; and (e) PQdvr-VSI.

Fig. 3. Simulation results: operation of proposed system during fault mode (PV-VSI: inactive and DVR-VSI: active). (a) Vpcc; (b) Vdvr; (c) Vload; (d) PQload; (e) PQgrid; (f) PQpv-VSI; and (g) PQdvr-VSI.

Fig. 4. Simulation results: operation of proposed system during balance three phase sag mode (PV-VSI: active and DVR-VSI: active). (a) Vpcc; (b) Vdvr-VSI; (c) Vload; (d) PQgrid; (e) PQpv-VSI; and (f) PQdvr-VSI.

Fig. 5. Simulation results: operation of proposed system during unbalanced sag mode (PV-VSI: active and DVR-VSI: active). (a) Vpcc; (b) Vdvr-vsi; (c) Vload; (d) PQgrid; (e) PQpv-VSI; and (f) PQdvr-VSI.

  

Fig. 6. Simulation results: operation of proposed system during inactive PV plant mode (PV-VSI: active and DVR-VSI: active). (a) Vpcc; (b) Vload; (c) Vdc; (d) PQload; (e) PQdvr-VSI; and (f) PQpv-VSI.

 

CONCLUSION:

In this paper, a new system configuration for integrating a conventional grid-connected PV system and self supported DVR is proposed. The proposed configuration not only exhibits all the functionalities of existing PV and DVR system, but also enhances the DVR operating range. It allows DVR to utilize active power of PV plant and thus improves the system robustness against sever grid faults. The proposed configuration can operate in different modes based on the grid condition and PV power generation. The discussed modes are healthy grid mode, fault mode, sag mode, and PV inactive mode. The comprehensive simulation study and experimental validation demonstrate the effectiveness of the proposed configuration and its practical feasibility to perform under different operating conditions. The proposed configuration could be very useful for modern load centers where on-site PV generation and strict voltage regulation are required.

 

REFERENCES:

  • A. Walling, R. Saint, R. C. Dugan, J. Burke, and L. A. Kojovic, “Summary of distributed resources impact on power delivery systems,” IEEE Trans. Power Del., vol. 23, no. 3, pp. 1636–1644, Jul. 2008.
  • Meza, J. J. Negroni, D. Biel, and F. Guinjoan, “Energy-balance modeling and discrete control for single-phase grid-connected PV central inverters,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2734–2743, Jul. 2008.
  • Shimizu, O. Hashimoto, and G. Kimura, “A novel high-performance utility-interactive photovoltaic inverter system,” IEEE Trans. Power Electron., vol. 18, no. 2, pp. 704–711, Mar. 2003.
  • B. Kjaer, J. K. Pedersen, and F. Blaabjerg, “A review of single-phase grid-connected inverters for photovoltaic modules,” IEEE Trans. Ind. Appl., vol. 41, no. 5, pp. 1292–1306, Sep./Oct. 2005.