Permanent Magnet Synchronous Generator Based Wind Energy and DG Hybrid System

ABSTRACT:

This paper examines the utilization of changeless magnet synchronous generators (PMSGs) for a breeze vitality transformation framework (WECS) and a diesel motor driven generator (DG hybrid system) set of an independent cross breed framework with a battery vitality stockpiling framework (BESS). For voltage control at the purpose of normal coupling (PCC) and adjusted supply at terminals of DG hybrid system set, a solitary stage D-Q hypothesis based control calculation is connected for the exchanging of voltage source converter (VSC) of BESS and the greatest power point following (MPPT) is accomplished for WECS with a gradual conductance procedure for the exchanging of a dc-dc help converter. Recreation aftereffects of created model of proposed independent mixture framework, which is produced in MATLAB show execution of both the controllers and power quality enhancement of the half breed framework.

 

 SCHEMATIC DIAGRAM:

 

Fig. 1 Schematic diagram of Wind-Diesel hybrid configuration

 EXPECTED SIMULATION RESULTS:

Fig. 2 (a) Characteristics of the system with constant wind speed under varying loads.

Fig. 3 (b) Estimation of supply currents and voltages using control algorithm

Fig.4 (c) dynamic Performance of controller of hybrid system under varying linear loads at 10 m/s wind speed

Fig. 5(a) Characteristics of the system with constant wind speed under varying loads.

Fig. 6(b) Estimation of supply currents and voltages using control algorithm

Fig.7(c) dynamic Performance of controller of hybrid system under varying nonlinear loads at 10 m/s wind speed.

Fig. 8 waveforms and harmonic spectra (a) Phase ‘a’ supply voltage of at PCC (b) Phase ‘a’ supply current under nonlinear unbalanced loads.

Fig. 9 Controllers’ performance under wind speed reduction (11 m/s-8 m/s)

Fig. 10  Controllers’ performance under rise in wind speed (8 m/s-11 m/s)

 CONCLUSION:

A 3-φ independent breeze diesel half breed framework utilizing PMSG alongside BESS has been recreated in MATLAB utilizing Simpower framework tool compartments. Different parts have been intended for the cross breed framework and controller’s acceptable execution has been delineated utilizing 1-φ-D-Q hypothesis with SOGI channels for different loads under unique conditions while keeping up consistent voltage at PCC and adjusted source flows of diesel generator and furthermore for music concealment according to rules of IEEE-519-1992 standard. A mechanical sensor less methodology has been utilized for accomplishing MPPT through gradual conductance procedure.

 

A Synchronous Generator Based Diesel-PV Hybrid Micro-grid with Power Quality Controller

 

ABSTRACT:

This paper presents an isolated microgrid, with synchronous generator(SG) based diesel generation (DG) system in combination with solar photo-voltaic(PV). The DG supplies power to the load directly, and a battery supported voltage source converter (VSC) is connected in shunt at point of common coupling (PCC). The PV array is connected at DC-link of the VSC through a boost converter. A high order optimization based adaptive filter control scheme is used for maintaining the quality of PCC voltages and source currents. This controller makes the waveform free of distortion, removes errors due to unbalances, corrects the power factor and makes the source current smooth sinusoidal, irrespective of the nature of load. MATLAB/Simulink based simulation results demonstrate satisfactory performance of the given system.

KEYWORDS:

  1. Battery
  2. Diesel generator
  3. LMF
  4. Power quality
  5. PV

SOFTWARE: MATLAB/SIMULINK

CIRCUIT DIAGRAM:

 

 

Fig. 1 System model

 EXPECTED SIMULATION RESULTS:

 

 Fig. 2 Steady State Response of DG-PV micro-grid

Fig. 3 Dynamic Response of DG-PV micro-grid

CONCLUSION:

An isolated SG based DG and PV hybrid micro-grid has been presented here, with a battery suppported VSC connected at PCC. Three-phase adaptive control is used for power quality improvement through VSC. The given system and control have been simulated in MATLAB/Simulink environment and results demonstrate their satisfactory performance in both steady state and dynamic conditions.

REFERENCES:

[1] G. Shafiullah et al., “Meeting energy demand and global warming by integrating renewable energy into the grid,” in 22nd Australasian Universities Power Engg. Conf. (AUPEC), pp. 1–7, Bali, 2012.

[2] M. Milligan et al., “Alternatives No More: Wind and Solar Power Are Mainstays of a Clean, Reliable, Affordable Grid,” IEEE Power & Energy Mag., vol. 13, no. 6, pp. 78–87, Nov.-Dec. 2015.

[3] L. Partain and L. Fraas, “Displacing California’s coal and nuclear generation with solar PV and wind by 2022 using vehicle-to-grid energy storage,” IEEE Photovoltaic Specialist Conf., pp. 1–6, LA, 2015.

[4] Daniel E. Olivares et al., “Trends in Microgrid Control,” in 2015 IEEE Trans. Smart Grid, vol. 5, no.4, pp. 1905–1919, July, 2014.

[5] Z. Zavody, “The grid challenges for renewable energy An overview and some priorities,” IET Seminar on Integrating Renewable Energy to the Grid, pp. 1–24, London 2014.