final year eee in ieee electrical projects in mancherial

final year eee in ieee electrical projects in mancherial. 
Software Used: Matlab/Simulink
Areas : Power Electronics and Drives, Power Systems, Renewable Energy and sources, etc
Contact us:
Asoka technologies provide Academic Electrical Projects mancherial.
ELECTRICAL ENGINEERING is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.
Electrical engineering has now subdivided into a wide range of sub fields including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.

Fuzzy-Logic-Controller-Based SEPIC Converter for Maximum Power Point Tracking



 This paper presents a fuzzy logic controller (FLC)-based single-ended primary-inductor converter (SEPIC) for maximum power point tracking (MPPT) operation of a photovoltaic (PV) system. The FLC proposed presents that the convergent distribution of the membership function offers faster response than the symmetrically distributed membership functions. The fuzzy controller for the SEPIC MPPT scheme shows high precision in current transition and keeps the voltage without any changes, in the variable-load case, represented in small steady-state error and small overshoot. The proposed scheme ensures optimal use of PV array and proves its efficacy in variable load conditions, unity, and lagging power factor at the inverter output (load) side. The real-time implementation of the MPPT SEPIC converter is done by a digital signal processor (DSP), i.e., TMS320F28335. The performance of the converter is tested in both simulation and experiment at different operating conditions. The performance of the proposed FLC-based MPPT operation of SEPIC converter is compared to that of the conventional proportional–integral (PI)-based SEPIC converter. The results show that the proposed FLC-based MPPT scheme for SEPIC can accurately track the reference signal and transfer power around 4.8% more than the conventional PI-based system.


  1. DC–DC power converters
  2. Fuzzy control
  3. Photovoltaic(PV) cells
  4. Proportional–integral (PI) controller
  5. Real-time system.



Fig. 1. Circuit diagram for the FLC based MPPT of SEPIC converter.



Fig. 2. Overall control scheme for the proposed FLC-based MPPT scheme for the SEPIC converter.


 Fig. 3. (a) Irradiation (W/m2). (b) Reference voltage tracks the maximum power .
Fig. 4. Experimental waveforms of the SEPIC converter at (a) 15% load condition and (b) full-load condition.

 Fig. 5. Output (top) voltage and (bottom) current waveforms of the SEPIC converter with the conventional PI control scheme.

Fig. 6. Output (top) voltage and (bottom) current waveforms of the SEPIC converter with the proposed FLC-based MPPT scheme.

Fig. 7. Error signal (difference between Vreal and Vref ) of the proposed FLC-based SEPIC converter.

Fig. 8. Variable-load inverter current, voltage, and voltage error signals.

 Fig. 9. Inverter current, voltage, and voltage error signals with lagging power factor load for the proposed FLC-based SEPIC and inverter system.


 An FLC-based MPPT scheme for the SEPIC converter and inverter system for PV power applications has been presented in this paper. A prototype SEPIC converter-based PV inverter system has also been built in the laboratory. The DSP board TMS320F28335 is used for real-time implementation of the proposed FLC and MPPT control algorithms. The performance of the proposed controller has been found better than that of the conventional PI-based converters. Furthermore, as compared to the conventional multilevel inverter, experimental results indicated that the proposed FLC scheme can provide a better THD level at the inverter output. Thus, it reduces the cost of the inverter and the associated complexity in control algorithms. Therefore, the proposed FLC-based MPPT scheme for the SEPIC converter could be a potential candidate for real-time PV inverter applications under variable load conditions.


 [1] K.M. Tsang andW. L. Chan, “Fast acting regenerative DC electronic load based on a SEPIC converter,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 269–275, Jan. 2012.

[2] S. J. Chiang, H.-J. Shieh, and M.-C. Chen, “Modeling and control of PV charger system with SEPIC converter,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4344–4353, Nov. 2009.

[3] M. G. Umamaheswari, G. Uma, and K. M. Vijayalakshmi, “Design and implementation of reduced-order sliding mode controller for higher-order power factor correction converters,” IET Power Electron., vol. 4, no. 9, pp. 984–992, Nov. 2011.

[4] A. A. Fardoun, E. H. Ismail, A. J. Sabzali, and M. A. Al-Saffar, “New efficient bridgeless Cuk rectifiers for PFC applications,” IEEE Trans. Power Electron., vol. 27, no. 7, pp. 3292–3301, Jul. 2012.


Full Soft-Switching High Step-Up Current-Fed DC-DC Converters with Reduced Conduction Losses



Two variants of the full soft-switching high step-up DC-DC converter are proposed. The main advantage of the converters is the minimized conduction losses by the use of the four-quadrant switches and a specific control algorithm. Simulation was performed to verify the principle of operation and to estimate the losses.


  1. DC-DC power converters
  2. Photovoltaic systems
  3. Soft switching
  4. Step-up
  5. Isolated




Fig. 1. Full soft-switching high step-up DC-DC converter

Fig. 2. Proposed converter topology with four four-quadrant switches.


 Fig. 3. Simulated voltage and current waveforms of S1 (a), S2 (b), S7.1 (c), S5 (d) for the proposed converter topology with a single four-quadrant switch


The proposed converters allow soft-switching of the both inverter and rectifier switches without any auxiliary passive elements and clamping circuits.

As seen from simulation results, the topology with a single four-quadrant switch has higher efficiency than the topology with four four-quadrant switches, but at the same time, it has few disadvantages that could affect the final choice of topology:

– Step-up factor is slightly lower than in the topology with four four-quadrant switches;

– The switching interval e (and the symmetrical interval in another half-period) must be of strictly right duration, which is equal to the time of current redistribution between switches S4 and S2. The shorter duration of this interval will result in high switching losses and, in extreme cases, can lead to damage of the switch S4. The significantly longer duration will result in current increase through the switch S2 and eventually may result in the boost inductor saturation.

– The original topology and the topology with four four quadrant switches does not have the problem with the longer duration of this switching interval and so they have lower requirements to the control system in dynamic mode. This means that proposed converter with four four-quadrant switches allows robust soft-switching commutation, which is hard to achieve in galvanically isolated current-fed DCDC converters.

The main disadvantage of the topologies is the presence of four switches in series in the inverter stage on the path of the current flow during the energy transfer interval. This leads to the conduction losses higher than in the conventional phase shifted full-bridge topology. Nevertheless the switching losses are lower due to the introduced soft-switching. It means that switching frequency could be increased while maintaining the efficiency at acceptable level.

Future work will be devoted to the experimental verification of the proposed converters and further control algorithm optimization.


[1] A. Blinov, D. Vinnikov, and V. Ivakhno, “Full soft-switching high stepup dc-dc converter for photovoltaic applications,” 2014 16th European Conference on Power Electronics and Applications (EPE’14-ECCE Europe), pp. 1–7, Aug 2014.

[2] Y. Sokol, Y. Goncharov, V. Ivakhno, V. Zamaruiev, B. Styslo, M. Mezheritskij, A. Blinov, and D. Vinnikov, “Using the separated commutation in two-stage dc/dc converter in order to reduce of the power semiconductor switches’ dynamic losses,” Energy Saving. Power Engineering. Energy Audit, 2014.

[3] A. Blinov, V. Ivakhno, V. Zamaruev, D. Vinnikov, and O. Husev, “Experimental verification of dc/dc converter with full-bridge active rectifier,” 38th Annual Conference on IEEE Industrial Electronics Society (IECON 2012), pp. 5179–5184 , Oct 2012.

[4] R.-Y. Chen, T.-J. Liang, J.-F. Chen, R.-L. Lin, and K.-C. Tseng, “Study and implementation of a current-fed full-bridge boost dc-dc converter with zero-current switching for high-voltage applications,” IEEE Transactions on Industry Applications, vol. 44, no. 4, pp. 1218–1226, July 2008.

[5] J.-F. Chen, R.-Y. Chen, and T.-J. Liang, “Study and implementation of a single-stage current-fed boost pfc converter with zcs for high voltage applications,” IEEE Transactions on Power Electronics, vol. 23, no. 1, pp. 379–386, Jan 2008.