Power management in PV-battery-hydro based standalone microgrid

ABSTRACT:

This work deals with the frequency regulation, voltage regulation, power management and load levelling of solar photovoltaic (PV)-battery-hydro based microgrid (MG). In this MG, the battery capacity is reduced as compared to a system, where the battery is directly connected to the DC bus of the voltage source converter (VSC). A bidirectional DC–DC converter connects the battery to the DC bus and it controls the charging and discharging current of the battery. It also regulates the DC bus voltage of VSC, frequency and voltage of MG. The proposed system manages the power flow of different sources like hydro and solar PV array. However, the load levelling is managed through the battery. The battery with VSC absorbs the sudden load changes, resulting in rapid regulation of DC link voltage, frequency and voltage of MG. Therefore, the system voltage and frequency regulation allows the active power balance along with the auxiliary services such as reactive power support, source current harmonics mitigation and voltage harmonics reduction at the point of common interconnection. The experimental results under various steady state and dynamic conditions, exhibit the excellent performance of the proposed system and validate the design and control of proposed MG.

 SOFTWARE: MATLAB/SIMULINK

 CIRCUIT DIAGRAM:
Fig. 1 Microgrid Topology and MPPT Control

(a) Proposed PV-battery-hydro MG

 EXPECTED SIMULATION RESULTS

 

 Fig. 2 Dynamic performance of PV-battery-hydro based MG following by solar irradiance change

(a) vsab, isc, iLc and ivscc, (b) Vdc, Ipv, Vb and Ib, (c) vsab, isa, iLa and ivsca, (d) Vdc, Ipv, Vb and Ib

 

Fig. 3 Dynamic performance of hydro-battery-PV based MG under load perturbation

(a) vsab, isc, Ipv and ivscc, (b) Vdc, Ipv, Vb and Ib, (c) vsab, isc, Ipv and ivscc, (d) Vdc, Ipv, and Vb

CONCLUSION:

In the proposed MG, an integration of hydro with the battery, compensates the intermittent nature of PV array. The proposed system uses the hydro, solar PV and battery energy to feed the voltage (Vdc), solar array current (Ipv), battery voltage (Vb) and battery current (Ib). When the load is increased, the load demand exceeds the hydro generated power, since SEIG operates in constant power mode condition. This system has the capability to adjust the dynamical power sharing among the different RES depending on the availability of renewable energy and load  demand. A bidirectional converter controller has been successful to maintain DC-link voltage and the battery charging and discharging currents. Experimental results have validated the design and  control of the proposed system and the feasibility of it for rural area electrification.

REFERENCES:

[1] Ellabban, O., Abu-Rub, H., Blaabjerg, F.: ‘Renewable energy resources: current status, future prospects and technology’, Renew. Sustain. Energy Rev.,2014, 39, pp. 748–764

[2] Bull, S.R.: ‘Renewable energy today and tomorrow’, Proc. IEEE, 2001, 89  (8), pp. 1216–1226

[3] Malik, S.M., Ai, X., Sun, Y., et al.: ‘Voltage and frequency control strategies of hybrid AC/DC microgrid: a review’, IET Renew. Power Gener., 2017, 11, (2), pp. 303–313

[4] Kusakana, K.: ‘Optimal scheduled power flow for distributed photovoltaic/ wind/diesel generators with battery storage system’, IET Renew. Power  Gener., 2015, 9, (8), pp. 916–924

[5] Askarzadeh, A.: ‘Solution for sizing a PV/diesel HPGS for isolated sites’, IET Renew. Power Gener., 2017, 11, (1), pp. 143–151

 

 

 

Single- and Two-Stage Inverter-Based Grid Connected Photovoltaic Power Plants With Ride-Through Capability Under Grid Faults

IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 6, NO. 3, JULY 2015

 ABSTRACT Grid-connected distributed generation sources interfaced with voltage source inverters (VSIs) need to be disconnected from the grid under: 1) excessive dc-link voltage; 2) excessive ac currents; and 3) loss of grid-voltage synchronization. In this paper, the control of single and two stage grid-connected VSIs in photovoltaic (PV) power plants is developed to address the issue of inverter disconnecting under various grid faults. Inverter control incorporates reactive power support in the case of voltage sags based on the grid codes’ (GCs) requirements to ride-through the faults and support the grid voltages. A case study of a 1-MW system simulated in MATLAB/Simulink software is used to illustrate the proposed control. Problems that may occur during grid faults along with associated remedies are discussed. The results presented illustrate the capability of the system to ride-through different types of grid faults.

 

KEYWORDS:

  1. DC–DC converter
  2. Fault-ride-through
  3. Photovoltaic (PV) systems
  4. Power system faults
  5. Reactive power support
  6. single and two stage inverter

 

SOFTWARE: MATLAB/SIMULINK

 

BLOCK DIAGRAM:

single and two stage inverter

Fig. 1. Diagram of a single-stage GCPPP

 single and two stage inverter

Fig. 2. Diagram of the two-stage conversion-based GCPPP

 

EXPECTED SIMULATION RESULTS:

Fig. 3. Short-circuiting the PV panels: (a) grid voltages; (b) grid currents; and (c) dc-link voltage when applying a 60% SLG voltage sag at MV side of the transformer.

Fig. 4. Short-circuiting the PV panels: (a) overall generated power; (b) injected active power; and (c) reactive power to the grid.

Fig. 5. Turning the dc–dc converter switch ON: (a) grid voltages; (b) grid currents; and (c) dc-link voltage when applying a 60% SLG voltage sag at the MV side.

Fig. 6. Control of the dc–dc converter to produce less power under voltage sag: (a) grid voltages; (b) grid currents; (c) dc-link voltage; (d) input voltage of the dc–dc converter; (e) estimated duty cycle; and (f) actual duty cycle under a 3LG with 45% voltage sag at MV side.

Fig. 7. Control of the dc–dc converter to produce less power under voltage sag: (a) grid voltages under a 3LG with 45% voltage sag at MV side; (b) related grid currents for G = 300 W/m2; and (c) related dc-link voltage; (d) grid voltages under an SLG with 65% voltage sag at theMV side; (e) related grid currents for G = 1000 W/m2; (f) related dc-link voltage; (g) related grid currents under G = 300 W/m2; and (h) related dc-link voltage.”

single and two stage inverter

CONCLUSION

Performance requirements of GCPPPs under fault conditions for single and two stage grid-connected inverters have been addressed in this paper. Some modifications have been proposed for controllers to make the GCPPP ride-through compatible to any type of faults according to the GCs. These modifications include applying current limiters and controlling the dc-link voltage by different methods. It is concluded that for the single-stage configuration, the dc-link voltage is naturally limited and therefore, the GCPPP is self-protected, whereas in the two-stage configuration it is not. Three methods have been proposed for the two-stage configuration to make the GCPPP able to withstand any type of faults according to the GCs without being disconnected. The first two methods are based on not generating any power from the PV arrays during the voltage sags, whereas the third method changes the power point of the PV arrays to inject less power into the grid compared with the prefault condition. The validity of all the proposed methods to ride-through voltage sags has been demonstrated by multiple case studies performed by simulations.

 

REFERENCES

  1. Trilla et al., “Modeling and validation of DFIG 3-MW wind turbine using field test data of balanced and unbalanced voltage sags,” IEEE Trans. Sustain. Energy, vol. 2, no. 4, pp. 509–519, Oct. 2011.
  2. Popat, B. Wu, and N. Zargari, “Fault ride-through capability of cascaded current-source converter-based offshore wind farm,” IEEE Trans. Sustain. Energy, vol. 4, no. 2, pp. 314–323, Apr. 2013.
  3. Marinopoulos et al., “Grid integration aspects of large solar PV installations: LVRT capability and reactive power/voltage support requirements,” in Proc. IEEE Trondheim Power Tech, Jun. 2011, pp. 1–8.
  4. Islam, A. Al-Durra, S. M. Muyeen, and J. Tamura, “Low voltage ride through capability enhancement of grid connected large scale photovoltaic system,” in Proc. 37th Annu. Conf. IEEE Ind. Electron. Soc. (IECON), Nov. 2011, pp. 884–889.

 MPPT with Single DC–DC Converter and Inverter for Grid-Connected Hybrid Wind-Driven PMSG–PV System

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2015

ABSTRACT: A new topology of a hybrid distributed generator based on photovoltaic and wind-driven permanent magnet synchronous generator is proposed. In this generator, the sources are connected together to the grid with the help of only a single boost converter followed by an inverter. Thus, compared to earlier schemes, the proposed scheme has fewer power converters. A model of the proposed scheme in the d − q-axis reference frame is developed. Two low-cost controllers are also proposed for the new hybrid scheme to separately trigger the dc–dc converter and the inverter for tracking the maximum power from both sources. The integrated operations of both proposed controllers for different conditions are demonstrated through simulation and experimentation. The steady-state performance of the system and the transient response of the controllers are also presented to demonstrate the successful operation of the new hybrid system. Comparisons of experimental and simulation results are given to validate the simulation model.

KEYWORDS:

  1. Grid-connected hybrid system
  2. Hybrid distributed generators (DGs)
  3. Smart grid
  4. Wind-driven PMSG–PV

 SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:

 

Fig. 1. Proposed DG system based on PMSG–PV sources.

EXPECTED SIMULATION RESULTS:

(a)

(b)

Fig. 2. DC link steady-state waveforms. (a) Experimental (voltage—50 V/div, current—10 A/div, and time—500 ms/div). (b) Simulated (voltage—20 V/div, current—5 A/div, and time—500 ms/div.

(a)

(b)

Fig. 3. Steady-state grid voltage and current waveforms. (a) Experimental (voltage—50 V/div, current—10 A/div, and time—20 ms/div). (b) Simulated (voltage—50 V/div, current—5 A/div, and time— 20 ms/div).

Experimental (Voltage 50V/div, Duty-cycle 0.6/div, Time 2s/div)

Simulated (Voltage 20V/div, Duty-cycle 0.5/div, Time 2s/div)

(a) Changes in rectifier output voltage and duty cycle of the boost converter.

Experimental (Voltage 50V/div, Current 10 A/div, Time 2s/div)

Simulated (Voltage 50V/div, Current 10/div)

(b) Changes in dc-link voltage and current

Experimental (Voltage 50V/div, Current 10A/div, Time 2s/div)

Simulated (Voltage 50V/div, Current 10A/div, Time 2s/div)

Fig.4. Transient response for a step change in PMSG shaft speed.. (c) Changes in grid current.

 CONCLUSION:

A new reliable hybrid DG system based on PV and wind driven PMSG as sources, with only a boost converter followed by an inverter stage, has been successfully implemented. The mathematical model developed for the proposed DG scheme has been used to study the system performance in MATLAB. The investigations carried out in a laboratory prototype for different irradiations and PMSG shaft speeds amply confirm the utility of the proposed hybrid generator in zero-net-energy buildings. In addition, it has been established through experimentation and simulation that the two controllers, digital MPPT controller and hysteresis current controller, which are designed specifically for the proposed system, have exactly tracked the maximum powers from both sources. Maintenance-free operation, reliability, and low cost are the features required for the DG employed in secondary distribution systems. It is for this reason that the developed controllers employ very low cost microcontrollers and analog circuitry. Furthermore, the results of the experimental investigations are found to be matching closely with the simulation results, thereby validating the developed model. The steady state waveforms captured at the grid side show that the power generated by the DG system is fed to the grid at unity power factor. The voltage THD and the current THD of the generator meet the required power quality norms recommended by IEEE. The proposed scheme easily finds application for erection at domestic consumer sites in a smart grid scenario.

REFERENCES:

[1] J. Byun, S. Park, B. Kang, I. Hong, and S. Park, “Design and implementation of an intelligent energy saving system based on standby power reduction for a future zero-energy home environment,” IEEE Trans. Consum. Electron., vol. 59, no. 3, pp. 507–514, Oct. 2013.

[2] J. He, Y. W. Li, and F. Blaabjerg, “Flexible microgrid power quality enhancement using adaptive hybrid voltage and current controller,” IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2784–2794, Jun. 2014.

[3] W. Li, X. Ruan, C. Bao, D. Pan, and X. Wang, “Grid synchronization systems of three-phase grid-connected power converters: A complexvector- filter perspective,” IEEE Trans. Ind. Electron., vol. 61, no. 4, pp. 1855–1870, Apr. 2014.

[4] C. Liu, K. T. Chau, and X. Zhang, “An efficient wind-photovoltaic hybrid generation system using doubly excited permanent-magnet brushless machine,” IEEE Trans. Ind. Electron, vol. 57, no. 3, pp. 831–839, Mar. 2010.

[5] S. A. Daniel and N. A. Gounden, “A novel hybrid isolated generating system based on PV fed inverter-assisted wind-driven induction generators,” IEEE Trans. Energy Convers., vol. 19, no. 2, pp. 416–422, Jun. 2004.

Design of Fuzzy Logic Based Maximum Power Point Tracking Controller for Solar Array for Cloudy Weather Conditions

 

ABSTRACT:

This paper proposes Maximum Power Point Tracking (MPPT) of a photovoltaic system under variable temperature and solar radiation conditions using Fuzzy Logic Algorithm. The cost of electricity from the PV array is more expensive than the electricity from the other non-renewable sources. So, it is necessary to operate the PV system at maximum efficiency by tracking its maximum power point at any weather conditions 111. Boost converter increases output voltage of the solar panel and converter output voltage depends upon the duty cycle of the MOSFET present in the boost converter. The change in the duty cycle is done by Fuzzy logic controller by sensing the power output of the solar panel. The proposed controller is aimed at adjusting the duty cycle of the DC-DC converter switch to track the maximum power of a solar cell array. MATLABI Simulink is used to develop and design the PV array system equipped with the proposed MPPT controller using fuzzy logic 12][31. The results show that the proposed controller is able to track the MPP in a shorter time with less fluctuation. The complete hardware setup with fuzzy logic controller is implemented and the results are observed and compared with the system without MPPT (Fuzzy logic controller).

KEYWORDS:

  1. MPPT
  2. Fuzzy Logic Control
  3. DC-DC Converter,
  4. Photo voltaic systems.

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:

Fig. 1. Block diagram of MPPT of PV array.

EXPECTED SIMULATION RESULTS:

 Fig. 2. Power Vs output voltage

Fig. 3. Voltage Vs Current output of solar panel

Fig. 4. Output voltage of the solar panel without MPPT.

Fig. 5. Output of the solar panel with MPPT FLC under cloudy weather conditions.

Fig. 6. PWM output when driven by FLC

 CONCLUSION:

This paper presents an intelligent control method of tracking maximum power and Simulation and hardware result show that proposed MPPT controller increases the efficiency of the PV array energy conversion efficiency. Results are compared with the panel without MPPT controller.

REFERENCES:

[1] Chetan Singh Solanki,” Solar Photo Voltaics “, PHI Learning pvt. Ltd ,2009.

[2] Bor-Ren Lin,”Analysis of Fuzzy Control Method Applied to DCDC Converter controf’ , IEEE Prowe .h g APK’93, pp. 22- 28,1993.

[3] Rohin M.Hillooda, Adel M.Shard,”A rule Based Fuzzy Logic controller for a PWM inverter in Photo Voltaic Energy Conversion Scheme”, IAS’SZ, PP.762-769, 1993.

[4] Pongsakor Takum, Somyot Kaitwanidvilai and Chaiyan Jettasen ; ‘Maximum POlVer Point Tracking using jilzzy logic control for photovoltaic systems.’ Proceedings Of International Multiconference of Engineers and Computer scientists ,Vol 2,March 2011.

[5] M.S.Cheik , Larbes, G.F Kebir and A ZerguelTas; ‘Maximum power point tracking using a jilzzy logic control scheme.’; ‘Departementd’Electronique’, Revue des Energies Renouvelables, VoI.lO,No 32 , September 2007, pp 387-395

Analysis and design of a current-fed zero-voltage-switching and zero-current-switching CL-resonant push–pull dc–dc converter

 

ABSTRACT:

A current-fed zero-voltage-switching (ZVS) and zero-current-switching (ZCS) CL-resonant push–pull dc – dc converter is presented in this paper. The proposed push–pull converter topology is suitable for unregulated low-voltage to high-voltage power conversion with low ripple input current. The resonant frequency of both capacitor and inductor is operated at approximately twice the main switching frequency. In this topology, the main switch is operated under ZVS because of the commutation of the transformer magnetising current and the parasitic drain–source capacitance. Because of the leakage inductance of the transformer and the resonant capacitance from the resonant circuit, both the main switch and output rectifier are operated by implementing ZCS. The operation and performance of the proposed converter has been verified on a 400-W prototype.

 SOFTWARE: MATLAB/SIMULINK

CIRCUIT DIAGRAM:

Figure 1 Schematic diagram of the proposed current-fed ZVS–ZCS CL-resonant push–pull dc–dc converter

EXPECTED SIMULATION RESULTS:

Figure 2 Measured waveforms of gate to source voltage and drain to source voltage a ZVS operations for Q1 and Q2 at the full load b Expanded scale of Fig. 7a in point A

 

Figure 3 ZCS operations for Q1 and Q2 at the full load

Figure 4 ZCS operations for rectifier diode at the full load

Figure 5 Waveforms of vin, iin, ip and icr at the full load

Figure 6 Waveforms with excessive dead time

Figure 7 Step change with resistance load

a Load connection

b Load disconnection

CONCLUSION:

This study proposed, analysed, and quantified a current-fed ZVS–ZCS CL-resonant push–pull dc–dc converter that utilises the commutation of the transformer magnetizing current and the parasitic drain–source capacitance to obtain the main switch to be operated under ZVS. By using the leakage inductance of a transformer and resonant capacitor, a sinusoidal current is formed in this resonant circuit by turning on and off the switch. Thus, both the main switch and the output rectifier can be operated under ZCS. Because this proposed converter includes an input inductance, the input terminal of the converter cannot be added with a filter. This converter can reach a steady state with a small ripple input current, which is especially suitable for unregulated dc–dc conversion from a low-voltage high-current source. From the experimental results, the main switch can be operated using both ZVS and ZCS and the output rectifier can be operated using ZCS. The operating principles and theoretical analysis of this proposed converter were verified by using a 400-W and 65-kHz prototype. The overall efficiency of the converter nearly reached 93% at full output power.

REFERENCES:

[1] SHOYAMA M., HARADA K.: ‘Steady-state characteristics of the push-pull dc-to-dc converter’, IEEE Trans. Aerosp. Electron. Syst., 1984, 20, (1), pp. 50–56

[2] THOTTUVELIL V.J., WILSON T.G., QWEN H.A.: ‘Analysis and design of a push-pull current-fed converter’. Proc. IEEE PESC, 1981, vol. 5, pp. 192–203

[3] REDL R., SOKAL N.: ‘Push –pull current-fed, multiple output regulated wide input range dc/dc power converter with only one inductor and with 0 to 100% switch duty ratio: operation at duty ratio below 50%’. Proc. IEEE PESC, 1981, pp. 204–212

[4] WILDON C.P., DE ARAGAO F., BARBI I.: ‘A comparison between two current-fed push-pull dc-dc converters – analysis, design and experimentation’. Proc. IEEE INTELEC, 1996, pp. 313–320

[5] YING J., ZHU Q., LIN H., WU Z.: ‘A zero-voltage-switching (ZVS) push-pull dc/dc converter for UPS’. Proc. IEEE PEDS, 2003, pp. 1495–1499

Naturally Clamped Zero Current Commutated Soft-switching Current-fed Push-Pull DC/DC Converter: Analysis, Design, and Experimental Results  

 

ABSTRACT:

The proposed converter has the following features: 1) zero current commutation (ZCC) and natural voltage clamping (NVC) eliminate the need for active-clamp circuits or passive snubbers required to absorb surge voltage in conventional current-fed topologies; 2) Switching losses are reduced significantly owing to zero-current switching (ZCS) of primary side devices and zero-voltage switching (ZVS) of secondary side devices. Turn-on switching transition loss of primary devices is also negligible. 3) Soft-switching and NVC are inherent and load independent. 4) The voltage across primary side device is independent of duty cycle with varying input voltage and output power and clamped at rather low reflected output voltage enabling the use of low voltage semiconductor devices. These merits make the converter good candidate for interfacing low voltage dc bus with high voltage dc bus for higher current applications. Steady state, analysis, design, simulation and experimental results are presented.

KEYWORDS:

  1. Current-fed converter
  2. DC/DC converter
  3. Natural clamping
  4. Soft-switching
  5. Zero-current commutation

 

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:

Fig. 1. Diagram of a FCV propulsion system.

CIRCUIT DIAGRAM:

Fig.2. Proposed ZCS current-fed push-pull dc/dc converter.

 

EXPECTED SIMULATION RESULTS:

Fig. 3. Operating waveforms of proposed ZCS current-fed push-pull converter in the buck mode.

Fig. 4. Simulation results for output power of 250W at 300V. (a) Current through input inductor iL and voltage VAB. (b) Primary switches currents iS1 and iS2 and secondary switches currents iS3 and iS4.

Fig. 5. Experimental results for output power of 250W at 300V(x-axis: 2μs/div): (a) Boost inductor current iL (5A/div), (b) Voltage vAB (100V/div) and voltage across secondary of transformer vsec (500 V/div), (c-d) Gate-to-source voltage Vgs (10V/div) and drain-to-source voltage Vds (50V/div) across the primary side MOSFETs and currents through them (10A/div). (e-f) Gate-to-source voltage Vgs (10V/div) and drain-to-source voltage Vds (200V/div) across the secondary side MOSFETs and currents through them (2A/div).

Fig. 6. Experimental results for output power of 100W at 300V(x-axis: 2μs/div): (a) Boost inductor current iL (5A/div), (b) Voltage vAB (100V/div) and voltage across secondary of transformer vsec (500 V/div), (c-d) Gate-to-source voltage Vgs (10V/div) and drain-to-source voltage Vds (50V/div) across the primary side MOSFETs and currents through them (10A/div). (e-f) Gate-to-source voltage Vgs (10V/div) and drain-to-source voltage Vds (200V/div) across the secondary side MOSFETs and currents through them (2A/div).

 

CONCLUSION:

This paper presents a novel soft-switching snubberless bidirectional current-fed isolated push-pull dc/dc converter for application of the ESS in FCVs. A novel secondary side modulation method is proposed to eliminate the problem of voltage spike across the semiconductor devices at turn-off. The above claimed ZCC and NVC of primary devices without any snubber are demonstrated and confirmed by the simulation and experimental results. ZCS of primary side devices and ZVS of secondary side devices are achieved, which reduces the switching losses significantly. Soft-switching is inherent and is maintained independent of load. Once ZCC, NVC, and soft-switching are designed to be obtained at rated power, it is guaranteed to happen at reduced load unlike voltage-fed converters. Turn-on switching transition loss of primary devices is also shown to be negligible. Hence maintaining soft-switching of all devices substantially reduces the switching loss and allows higher switching frequency operation for the converter to achieve a more compact and higher power density system. Proposed secondary modulation achieves natural commutation of primary devices and clamps the voltage across them at low voltage (reflected output voltage) independent of duty cycle. It therefore eliminates requirement of active-clamp or passive snubber. Usage of low voltage devices results in low conduction losses in primary devices, which is significant due to higher currents on primary side. The proposed modulation method is simple and easy to implement. These merits make the converter promising for interfacing low voltage dc bus with high voltage dc bus for higher current applications such as FCVs, front-end dc/dc power conversion for renewable (fuel cells/PV) inverters, UPS, microgrid, V2G, and energy storage. The specifications are taken for FCV but the proposed modulation, design, and the demonstrated results are suitable for any general application of current-fed converter (high step-up). Similar merits and performance will be achieved.

REFERENCES:

[1] A. Khaligh and Z. Li, “Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: State of the art”, IEEE Trans. on Vehicular Technology, vol. 59, no. 6, pp. 2806- 2814, Oct. 2009.

[2] A. Emadi, and S. S. Williamson, “Fuel cell vehicles: opportunities and challenges,” in Proc. IEEE PES, 2004, pp. 1640-1645.

[3] K. Rajashekhara, “Power conversion and control strategies for fuel cell vehicles,” in Proc. IEEE IECON, 2003, pp. 2865-2870.

[4] A. Emadi, S. S. Williamson, and A. Khaligh, “Power electronics intensive solutions for advanced electric, hybrid electric, and fuel cell vehicular power systems,” IEEE Trans. Power Electron., vol. 21, no. 3, pp. 567–577, May. 2006.

[5] A. Emadi, K. Rajashekara, S. S. Williamson, and S. M. Lukic, “Topological overview of hybrid electric and fuel cell vehicular power system architectures and configurations” IEEE Trans. on Vehicular

Technology, vol. 54, no. 3, pp. 763–770, May. 2005.

Modular Multilevel DC/DC Converters with Phase Shift Control Scheme for High Voltage DC-Based Systems

ABSTRACT

In this paper, by investigating the topology derivation principle of the phase shift controlled three-level DC/DC converters, the modular multilevel DC/DC converters, by integrating the full-bridge converters and three-level flying-capacitor circuit, are proposed for the high step-down and high power DC-based systems. The high switch voltage stress in the primary side is effectively reduced by the full-bridge modules in series. Therefore, the low-voltage rated power devices can be employed to obtain the benefits of low conduction losses. More importantly, the voltage auto-balance ability among the cascaded modules is achieved by the inherent flying capacitor, which removes the additional possible active components or control loops. In additional, zero-voltage-switching (ZVS) performance for all the active switches can be provided due to the phase shift control scheme, which can reduce the switching losses. The circuit operation and converter performance are analyzed in detail. Finally, the performance of the presented converter is verified by the simulation results.

 

KEYWORDS

  1. Modular multilevel DC/DC converter
  2. Phase shift control scheme
  3. Input voltage auto-balance
  4. Zero voltage switching

 

SOFTWARE: MATLAB/SIMULINK

 

CIRCUIT DIAGRAM:

Proposed modular multilevel DC/DC converter with input voltage auto-balance ability.

Fig.1. Proposed modular multilevel DC/DC converter with input voltage auto-balance ability.

 

SIMULATION RESULTS

image002 imulation waveforms: (a) Input voltage without flying capacitor and (b) Input voltage with flying capacitor.

Fig.2. Simulation waveforms: (a) Input voltage without flying capacitor and (b) Input voltage with flying capacitor.

Simulation result of primary voltage and current.

Fig.3. Simulation result of primary voltage and current.

Simulation result of ZVS operation: (a)ZVS operation for S11 and (b) ZVS operation for S14.

Fig.4. Simulation result of ZVS operation: (a)ZVS operation for S11 and (b) ZVS operation for S14.

image006

Fig.5. Simulation result of input voltage sharing.

Measured efficiency of proposed converter.

Fig.6. Measured efficiency of proposed converter.

CONCLUSION

In this paper, a novel phase shift controlled modular multilevel DC/DC converter is proposed and analyzed for the high input voltage DC-based systems. Due to the inherent flying capacitor, which connects the input divided capacitors alternatively, the input voltage is automatically shared and balanced without any additional power components and control loops. Consequently, the switch voltage stress is reduced and the circuit reliability is enhanced. By adopting the phase shift control scheme, ZVS soft switching performance is ensured to reduce the switching losses. The modular multilevel DC/DC converter concept can be easily extend to N-stage converter with stacked full-bridge modules to satisfy extremely high voltage applications with low voltage rated power switches.

 

REFERENCES

  1. Kakigano, Y. Miura and T. Ise, “Low-Voltage Bipolar-Type DC Microgrid for Super High Quality Distribution,” IEEE Trans. Power Electron., Vol. 25, No. 12, pp. 3066-3075, Dec 2010.
  2. Anand and B. G. Fernandes, “Reduced-Order Model and Stability Analysis of Low-Voltage DC Microgrid,” IEEE Trans. Ind. Electron., vol. 60, No. 11, pp. 5040-5049, Nov 2013.
  3. Anand and B. G. Fernandes, “Optimal voltage level for DC microgrids,” IEEE Conf. Ind. Electron. (IECON), pp. 3034-3039, 2010.
  4. Salomonsson, L. Soder and A. Sannino, “An Adaptive Control System for a DC Microgrid for Data Centers,” IEEE Trans. Ind. Appl., vol. 44, No. 6, pp. 1910-1917, Nov./Dec. 2008.
  5. B. Park, G. W. Moon and M. J. Youn, “Series-Input Series-Rectifier Interleaved Forward Converter With a Common Transformer Reset Circuit for High-Input-Voltage Applications,” IEEE Trans. Power Electron., vol. 26, No. 11, pp. 3242-3253, Nov 2011.Modular Multilevel DC/DC Converters with Phase Shift Control Scheme for High Voltage DC-Based Systems

Full-Soft-Switching High Step-Up Bidirectional Isolated Current-Fed Push-Pull DC-DC Converter for Battery Energy Storage Applications

 

ABSTRACT

This paper presents a novel bidirectional current-fed push-pull DC-DC converter topology with galvanic isolation. The control algorithm proposed enables full-soft-switching of all transistors in a wide range of input voltage and power with no requirement for snubbers or resonant switching. The converter features an active voltage doubler rectifier controlled by the switching sequence synchronous to that of the input-side switches. As a result, full-soft-switching operation at a fixed switching frequency is achieved. Operation principle for the energy transfer in both directions is described, followed by verification with a 300 W experimental prototype. The converter has considerably higher voltage step-up performance than traditional current-fed converters Experimental results obtained are in good agreement with the theoretical steady-state analysis.

 

KEYWORDS

  1. Current-fed dc-dc converter
  2. Bidirectional converter
  3. Soft-switching
  4. ZVS
  5. ZCS
  6. Push-pull converter
  7. Switching control method

 

SOFTWARE: MATLAB/SIMULINK

CIRCUIT DIAGRAM

Full-soft-switching CF push-pull converter proposed.

Fig. 1. Full-soft-switching CF push-pull converter proposed.

 

SIMULATION RESULTS

Simulation current and voltage waveforms of the switch S1.1.

Fig. 2. Simulation current and voltage waveforms of the switch S1.1.

Simulation current and voltage waveforms of the switch S1.2.

Fig. 3. Simulation current and voltage waveforms of the switch S1.2.

Simulation current and voltage waveforms of the switch S4.

Fig. 4. Simulation current and voltage waveforms of the switch S4.

CONCLUSION

A novel bidirectional current-fed push-pull converter with galvanic isolation was introduced. It features full-softswitching operation of all semiconductor components, while its DC voltage gain is higher than in traditional current-fed converters due to the utilization of the circulating energy for the input voltage step-up. As a result, it does not suffer from short intervals of energy transfer from the input side to the output side since at least half of the switching period is dedicated for this. Moreover, it does not require any clamping circuits, since the novel control algorithm features natural clamping of the switches at the current-fed side. Despite a relatively high number of semiconductor components, it shows the peak efficiency of 96.3%, which does not depend on the energy transfer direction for the corresponding operating point. Soft-switching operation with continuous current at the currentfed side makes the converter proposed suitable for residential battery energy storage systems. Further research will be directed towards experimental verification of the converter performance with a lithium iron phosphate battery.

 

REFERENCES

  1. Blaabjerg, and D.M. Ionel, “Renewable Energy Devices and Systems – State-of-the-Art Technology, Research and Development, Challenges and Future Trends,” Electric Power Components and Systems, vol.43, no.12, pp.1319-1328, 2015.
  2. C, Heymans, S, B. Walker, S. B. Young, M. Fowler, “Economic analysis of second use electric vehicle batteries for residential energy storage and load-levelling,” Energy Policy, vol. 71, pp. 22-30, Aug. 2014.
  3. Weniger, T. Tjaden, V. Quaschning, “Sizing of Residential PV Battery Systems,” Energy Procedia, vol. 46, pp. 78-87,2014.
  4. J. Chiang, K. T. Chang and C. Y. Yen, “Residential photovoltaic energy storage system,” IEEE Trans. Ind. Electron., vol. 45, no. 3, pp. 385-394, Jun 1998.
  5. X. Chen, H. B. Gooi and M. Q. Wang, “Sizing of Energy Storage for Microgrids,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 142-151, 2012.

A Comparison of Half Bridge & Full Bridge Isolated DC-DC Converters for Electrolysis Application

ABSTRACT:

This paper presents a comparison of half bridge and full bridge isolated, soft-switched, DC-DC converters for Electrolysis application. An electrolyser is a part of renewable energy system which generates hydrogen from water electrolysis that used in fuel cells. A DC-DC converter is required to couple electrolyser to system DC bus. The proposed DC-DC converter is realized in both full-bridge and half-bridge topology in order to achieve zero voltage switching for the power switches and to regulate the output voltage. Switching losses are reduced by zero voltage switching. Switching stresses are reduced by using resonant inductor and capacitor. The proposed DC-DC converter has advantages like high power density, low EMI, reduced switching stresses, high circuit efficiency and stable output voltage. The MATLAB simulation results show that the output of converter is free from the ripples and regulated output voltage and this type of converter can be used for electrolyser application. Experimental results are obtained from a MOSFET based DC-DC Converter with LC filter. The simulation results are verified with the experimental results.

KEYWORDS:

  1. DC-DC converter
  2. Electrolyser
  3. Renewable energy sources
  4. Resonant converter
  5. TDR

SOFTWARE: MATLAB/SIMULINK

CIRCUIT DIAGRAM:

 image001

Fig 1. Half Bridge DC-DC Converter.

image002

Fig 2. Full Bridge DC-DC Converter.

 EXPECTED SIMULATION RESULTS:

 image003

Fig 3 (b) Driving Pulses

image004

Fig 4 (c) Inverter output voltage with LC filter

image005

Fig 5 (d) Transformer secondary voltages

image006

Fig 6 (e) Output voltage and current

image007

Fig 7 (b) Driving Pulses

image008

Fig 8 (c) Inverter output voltage with LC filter

image009

Fig 9 (d) Transformer secondary voltage

image010

Fig 10 (e) Output voltage and current

 CONCLUSION:

 A comparison of half bridge and full bridge isolated DC-DC converters for Electrolysis application are presented. DC-DC converters for electrolyser system is simulated and tested with LC filter at the output. The electrical performances of the converter have been analyzed. The simulation and experimental results indicate that the output of the inverter is nearly sinusoidal. The output of rectifier is pure DC due to the presence of LC filter at the output. Switching losses are reduced by zero voltage switching. Switching stresses are reduced by using resonant inductor and capacitor The advantages of resonant converter are reduced (di/dt), low switching losses and high efficiency. Switching losses are reduced by zero voltage switching. Switching stresses are reduced by using resonant inductor and capacitor The converter maximizes the efficiency through the zero voltage switching and the use of super-junction MOSFET as switching devices with high dynamic characteristics and low direct voltage drop. Half bridge converter is found to be better than that of full bridge converter.

REFERENCES:

[1] E.J.Miller, “Resonant switching power conversion,”in Power Electronics Specialists Conf.Rec., 1976, pp. 206-211.

[2] V. Volperian and S. Cuk , “A complete DC analysis of the series resonant converter”, in IEEE power electronics specialists conf. Rec. 1982, pp. 85-100.

[3] R.L. Steigerwald, “High-Frequency Resonant Transistor DC-DC Converters”, IEEE Trans. On Industrial Electronics, vol.31, no.2, May1984, pp. 181-191.

[4] D.J. Shortt, W.T. Michael, R.L. Avert, and R.E. Palma, “A 600 W four stage phase-shifted parallel DC-DC converter,”, IEEE Power Electronics Specialists Conf., 1985, pp. 136-143.

[5] V. Nguyen, J. Dhayanchand, and P. Thollot, “A multiphase topology series-resonant DC-DC converter,” in Proceedings of Power Conversion International, 1985, pp. 45-53.

An Ultracapacitor Integrated Power Conditioner for Intermittency Smoothing and Improving Power Quality of Distribution Grid

ABSTRACT:

Penetration of various types of distributed energy resources (DERs) like solar, wind, and plug-in hybrid electric vehicles (PHEVs) onto the distribution grid is on the rise. There is a corresponding increase in power quality problems and intermittencies on the distribution grid. In order to reduce the intermittencies and improve the power quality of the distribution grid, an ultracapacitor (UCAP) integrated power conditioner is proposed in this paper. UCAP integration gives the power conditioner active power capability, which is useful in tackling the grid intermittencies and in improving the voltage sag and swell compensation. UCAPs have low energy density, high-power density, and fast charge/discharge rates, which are all ideal characteristics for meeting high-power low-energy events like grid intermittencies, sags/swells. In this paper, UCAP is integrated into dc-link of the power conditioner through a bidirectional dc–dc converter that helps in providing a stiff dc-link voltage. The integration helps in providing active/reactive power support, intermittency smoothing, and sag/swell compensation. Design and control of both the dc–ac inverters and the dc–dc converter are discussed. The simulation model of the overall system is developed and compared with the experimental hardware setup.

KEYWORDS:

  1. Active power filter (APF)
  2. Dc–dc converter
  3. D–q control
  4. Digital signal processor (DSP)
  5. Dynamic voltage restorer (DVR)
  6. Energy storage integration
  7. Sag/swell
  8. Ultracapacitors (UCAP)

 SOFTWARE: MATLAB/SIMULINK

 BLOCK DIAGRAM:

 image001

Fig. 1. One-line diagram of power conditioner with UCAP energy storage.

EXPECTED SIMULATION RESULTS:

 image002

Fig. 2. (a) Source and load rms voltages Vsrms and VLrms during sag. (b) Source voltages Vsab (blue), Vsbc (red), and Vsca (green) during sag. (c) Injected voltages Vinj2a (blue), Vinj2b (red), and Vinj2c (green) during sag. (d) Load voltages VLab (blue), VLbc (red), and VLca (green) during sag.

image003

Fig. 3. (a) Currents and voltages of dc–dc converter. (b) Active and reactive

power of grid, load, and inverter during voltage sag.

 CONCLUSION:

In this paper, the concept of integrating UCAP-based rechargeable energy storage to a power conditioner system to improve the power quality of the distribution grid is presented. With this integration, the DVR portion of the power conditioner will be able to independently compensate voltage sags and swells and the APF portion of the power conditioner will be able to provide active/reactive power support and renewable intermittency smoothing to the distribution grid. UCAP integration through a bidirectional dc–dc converter at the dc-link of the power conditioner is proposed. The control strategy of the series inverter (DVR) is based on inphase compensation and the control strategy of the shunt inverter (APF) is based on id iq method. Designs of major components in the power stage of the bidirectional dc–dc converter are discussed. Average current mode control is used to regulate the output voltage of the dc–dc converter due to its inherently stable characteristic. A higher level integrated controller that takes decisions based on the system parameters provides inputs to the inverters and dc–dc converter controllers to carry out their control actions. The simulation of the integrated UCAP-PC system which consists of the UCAP, bidirectional dc–dc converter, and the series and shunt inverters is carried out using PSCAD. The simulation of the UCAP-PC system is carried out using PSCAD. Hardware experimental setup of the integrated system is presented and the ability to provide temporary voltage sag compensation and active/reactive power support and renewable intermittency smoothing to the distribution grid is tested. Results from simulation and experiment agree well with each other thereby verifying the concepts introduced in this paper. Similar UCAP based energy storages can be deployed in the future in a microgrid or a low-voltage distribution grid to respond to dynamic changes in the voltage profiles and power profiles on the distribution grid.

 REFERENCES:

[1] N. H. Woodley, L. Morgan, and A. Sundaram, “Experience with an inverter-based dynamic voltage restorer,” IEEE Trans. Power Del., vol. 14, no. 3, pp. 1181–1186, Jul. 1999.

[2] J. G. Nielsen, M. Newman, H. Nielsen, and F. Blaabjerg, “Control and testing of a dynamic voltage restorer (DVR) at medium voltage level,” IEEE Trans. Power Electron., vol. 19, no. 3, pp. 806–813, May 2004.

[3] V. Soares, P. Verdelho, and G. D. Marques, “An instantaneous active and reactive current component method for active filters,” IEEE Trans. Power Electron., vol. 15, no. 4, pp. 660–669, Jul. 2000.

[4] H. Akagi, E. H. Watanabe, and M. Aredes, Instantaneous Reactive Power Theory and Applications to Power Conditioning, 1st ed. Hoboken, NJ, USA: Wiley/IEEE Press, 2007.

[5] K. Sahay and B. Dwivedi, “Supercapacitors energy storage system for power quality improvement: An overview,” J. Energy Sources, vol. 10, no. 10, pp. 1–8, 2009.