Critical Current Control (C3) and Modeling of a Buck Based LED Driver with Power Factor Correction

ABSTRACT

Buck converter has a good aptitude for LED driver application. Here a new technique introduced to control and model a buck converter in the closed loop condition using Lagrange equation. To improve the final model accuracy, parasitic elements of the converter are taken into account. The main advantage of this method is its novelty and simple implementation. Also, the converter power factor has improved under critical current control (C3) technique. Frequency response and step response of the small signal model are derived and analysed. The theoretical predictions are tested and validated by means of PSIM software. Finally, precise agreement between the proposed model and the simulation results has obtained.

 

INDEX TERMS:

  1. Power factor correction
  2. LED driver
  3. Buck converter
  4. Small signal model.
  5. critical current

 

SOFTWARE: MATLAB/SIMULINK

  

CIRCUIT DIAGRAM

critical current control

Fig. 1. Converter overall circuitry by C3 method in the PFC mode

 

SIMULATION RESULTS

Fig. 2. Converter source current and voltage along with each other

Fig. 3. Reference current, input voltage and current after the bridge

Fig.4. Harmonic contents of the converter input current

Fig.5. Output voltage at the start-up moment

Fig.6. Output capacitor current

Fig.7. Load change effect on the converter input current

CONCLUSION

This paper analyses a buck based LED driver with improved power factor. Power factor correction is done using critical current control (C3) or borderline conduction mode (BCM). Also, the Lagrange differential equations are employed here as an efficient tool for switching converter modeling in the closed loop condition. The proposed modeling technique gives the designer better intuition about the circuit under study rather than traditional state space averaging (SSA) method. SSA is a tedious and fully mathematical tool for switching converters modeling. In addition, parasitic elements of the converter have taken into account so it helps to select the circuit parts value correctly before manufacturing process. Dynamic behaviour of the converter is analysed in both frequency and time domain such as transfer functions and step response. A PI compensator is employed in the closed feedback loop to stabilize and modulate the reference current amplitude corresponding to the demanded power. Since this method relying on the averaging method, then the final model is reliable from 0 Hz up to half of switching frequency according to the Nyquist theorem. Finally, the simulation results confirm the proposed model exactness and indicate the rapidity of system step response under compelling conditions.

 

REFERENCES

  • Jardini J.A. et al., Power Flow Control in the Converters Interconnecting AC-DC Meshed Systems, Przegląd Elektrotechniczny, 01(2015), 46-49.
  • Gajowik T., Rafał K., Bobrowska M., Bi-directional DC-DC converter in three-phase Dual Active Bridge Topology, Przegląd Elektrotechniczny, 05(2014), 14-20.
  • Kazmierczuk M.K., Pulse Width Modulated DC-DC Power Converters, Wiley, Ohio, 2008.
  • Ben-Yaakov S., Average simulation of PWM converters by direct implementation of behavioural relationships, IEEE Conf. , APEC, 1993, San diego, CA., 510-516.
  • Shepherd W., Zhang L., Power Converter Circuits, Marcel & Dekker Inc., New York, 2004.

A New BLDC Motor Drives Method Based on BUCK Converter for Torque Ripple Reduction

2006, IEEE

ABSTRACT: This paper presents a comprehensive analysis on torque ripples of brushless dc motor drives in conduction region and commutation region. A novel method for reducing the torque ripple in brushless dc motors with a single current sensor has been proposed by adding BUCK converter in the front of 3-phase inverter.In such drives, torque ripple suppression technique is theoretically effective in commutation region as well as conduction region. Effectiveness and feasibility of the proposed control method is verified through experiments.

KEYWORDS:

  1. Brushless dc motor
  2. Torque ripple
  3. Conduction region
  4. Commutation region

SOFTWARE: MATLAB/SIMULINK

CIRCUIT DIAGRAM:

Fig1. The new proposed circuit configuration

EXPECTED SIMULATION RESULTS:

 

Fig.2. The 2-phase current-waveforms of conventional modulation mode

Fig.3. The 2-phase current-waveforms of new proposed modulation mode

Fig.4.The commutation current-waveforms of conventional modulation mode

Fig.5.The commutation current-waveforms of new proposed modulation mode

CONCLUSION:

In this paper,a new torque ripple reduction method based on buck converter has been proposed for brushless dc motor drives using a single dc current sensor. In such control method, the dc-link current sensor can give correct information corresponding to the motor phase currents to eliminate torque ripples in conduction region. Meanwhile, torque ripples have been attenuated effectively during commutation region. Subsequently effectiveness and feasibility of the proposed control method are verified through experiments.

REFERENCES:

[1] Joong-Ho Song and Ick Choy, “Commutation torque ripple reduction in brushless DC motor drives using a single DC current sensor,”IEEE Trans. on Power Electronics,vol. 19, No.2 ,pp.312-319,March 2004.

[2] Byoung-Hee Kang,Choel-Ju Kim,Hyung-Su Mok and Gyu-Ha Choe, “Analysis of torque ripple in BLDC motor with commutation time,”Proceedings of IEEE,vol.2,pp.1044-1048, June 2001.

[3] Carlson R,Lajoie-Mazenc M and Fagundes J.C.d.S, “Analysis of torque ripple due to phase communtation in brushless DC machines,”IEEE Trans. on Industry Applications,vol.28,no.3, pp.632-638,May-June 1992.

[4] Luk P.C.K and Lee C.K, “Efficient modeling for a brushless DC motor drive,”International Conference on Industrial Electronics,Control and Instrumentation,vol.1,pp.188-191, September 1994.

[5] Lei Hao,Toliyat,H.A, “BLDC motor full speed range operation including the flux-weakening region,”IEEE-IAS Annual Meeting,vol.1,pp.618-624, Octorber 2003.

Comprehensive Study of Single-Phase AC-DC Power Factor Corrected Converters with High-Frequency Isolation

ABSTRACT: Solid-state switch mode AC-DC converters having high-frequency transformer isolation are developed in buck, boost, and buck-boost configurations with improved power quality in terms of reduced total harmonic distortion (THD) of input current, power-factor correction (PFC) at AC mains and precisely regulated and isolated DC output voltage feeding to loads from few Watts to several kW. This paper presents a comprehensive study on state of art of power factor corrected single-phase AC-DC converters configurations, control strategies, selection of components and design considerations, performance evaluation, power quality considerations, selection criteria and potential applications, latest trends, and future developments. Simulation results as well as comparative performance are presented and discussed for most of the proposed topologies.

 

INDEX TERMS: AC-DC converters, harmonic reduction, high-frequency (HF) transformer isolation, improved power quality converters, power-factor correction.

 

SOFTWARE: MATLAB/SIMULINK

image001

Fig. 1. Classification of improved power quality single-phase AC-DC converters with HF transformer isolation.

CIRCUIT CONFIGURATIONS

A. Buck AC-DC Converters

image002         image003

Fig. 2. Buck forward AC-DC converter with voltage follower control.

Fig. 3. Buck push-pull AC-DC converter with voltage follower control.

                                           image004       image005

 

 

 

 

Fig. 4. Half-bridge buck AC-DC converter with voltage follower control.

Fig. 5. Buck full-bridge AC-DC converter with voltage follower control

 B. Boost AC-DC Converters

image006     image007

Fig. 6. Boost forward AC-DC converter with current multiplier control.

Fig. 7. Boost push-pull AC-DC converter with current multiplier control.

image008     image009

Fig. 8. Boost half-bridge AC-DC converter with current multiplier control.

Fig. 9. Boost full-bridge AC-DC converter with current multiplier control.

 C. Buck-Boost AC-DC Converters

image010           image011

Fig. 10. Flyback AC-DC converter with current multiplier control.

Fig. 11. Cuk AC-DC converter with voltage follower control.

image012      image013

Fig. 12. SEPIC AC-DC converter with voltage follower control.

Fig. 13. Zeta AC-DC converter with voltage follower control.

 

SIMULATION RESULTS:

image014

Fig. 14. Current waveforms and its THD for buck AC-DC converter topologies in CCM. (a) Forward buck topology (Fig. 2).( b) Push-pull buck topology (Fig. 3). (c) Half-bridge buck topology (Fig. 4). (d) Bridge buck topology (Fig. 5).

image015

Fig. 15. Current waveforms and its THD for boost AC-DC converter topologies in CCM. (a) Forward boost topology (Fig. 6). (b) Push-pull boost topology (Fig. 7). (c) Half-bridge boost topology (Fig. 8). (d) Bridge boost topology (Fig. 9).

image016

Fig. 16. Current waveforms and its THD for buck-boost AC-DC converter topologies in CCM. (a) Flyback topology (Fig. 10). (b) Cuk topology (Fig. 11). (c) SEPIC topology (Fig. 12). (d) Zeta topology (Fig. 13).

image017

Fig. 17. Current waveforms and its THD for buck AC-DC converter topologies in DCM. (a) Forward buck topology (Fig. 2). (b) Push-pull buck topology (Fig. 3). (c) Half-bridge buck topology (Fig. 4). (d) Bridge buck topology (Fig. 5).

image018

Fig. 18. Current waveforms and its THD for boost AC-DC converter topologies in DCM. (a) Forward boost topology (Fig. 6). (b) Push-pull boost topology (Fig. 7).

image019

Fig. 19. Current waveforms and its THD for buck-boost AC-DC converter topologies in DCM. (a) Flyback topology (Fig. 10). (b) Cuk topology (Fig. 11). (c) SEPIC topology (Fig. 12). (d) Zeta topology (Fig. 13).

 

CONCLUSION

A comprehensive review of the improved power quality HF transformer isolated AC-DC converters has been made to present a detailed exposure on their various topologies and its design to the application engineers, manufacturers, users and researchers. A detailed classification of these AC-DC converters into 12 categories with number of circuits and concepts has been carried out to provide easy selection of proper topology for a specific application. These AC-DC converters provide a high level of power quality at AC mains and well regulated, ripple free isolated DC outputs. Moreover, these converters have been found to operate very satisfactorily with very wide AC mains voltage and frequency variations resulting in a concept of universal input. The new developments in device technology, integrated magnetic and microelectronics are expected to provide a tremendous boost for these AC-DC converters in exploring number of additional applications. It is hoped that this exhaustive design and simulation of these HF transformer isolated AC-DC converters is expected to be a timely reference to manufacturers, designers, researchers, and application engineers working in the area of power supplies.

 

REFERENCES

[1] IEEE Recommended Practices and Requirements for Harmonics Control in Electric Power Systems, IEEE Standard 519, 1992.

[2] Electromagnetic Compatibility (EMC) – Part 3: Limits- Section 2: Limits for Harmonic Current Emissions (equipment input current 􀀀16 A per phase), IEC1000-3-2 Document, 1st ed., 1995.

[3] A. I. Pressman, Switching Power Supply Design, 2nd ed. New York: McGraw-Hill, 1998.

[4] K. Billings, Switchmode Power Supply Handbook, 2nd ed. NewYork: McGraw-Hill, 1999.

[5] N. Mohan, T. Udeland, and W. Robbins, Power Electronics: Converters, Applications and Design, 3rd ed. New York: Wiley, 2002.