Current Control of Three-phase Grid connected PV Inverters using Adaptive PR Controller

ABSTRACT:

In recent years, there has been a rapid increase in the number of grid connected three phase inverter systems being connected to the distribution network. As a result, the need for high quality, low harmonic distortion, and current injection into the grid is essential. To achieve this, careful consideration of the inverter controller is necessary. Many control methods are based on the traditional proportional-integral controller (PI), or the more recently adopted Proportional Resonant controller (PR). This paper presents a new technique of minimizing the error of the current control in a three phase grid connected inverter using a readily implementable Adaptive Proportional Resonance controller. Simulation and experimental results demonstrate the effectiveness of the proposed technique.

 

KEYWORDS:

  1. Proportional Resonant
  2. Grid- connected Inverter
  3. LCL filter.

 

SOFTWARE: MATLAB/SIMULINK

 

BLOCK DIAGRAM:

 Adaptive PR controller in stationary reference control

Fig 1 Adaptive PR controller in stationary reference control

  

EXPECTED SIMULATION RESULTS:

 Simulation result waveforms. (a) Three phase voltage waveform. (b) Three phase current waveform. 

Fig.2 Simulation result waveforms. (a) Three phase voltage waveform. (b) Three phase current waveform.

Simulation waveforms for conventional PR controller. (a) i-alpha. (b) ibeta.

Fig.3 Simulation waveforms for conventional PR controller. (a) i-alpha. (b) ibeta.

. Simulation waveforms for adaptive PR controller. (a) i-alpha. (b) i-beta.

Fig. 4. Simulation waveforms for adaptive PR controller. (a) i-alpha. (b) i-beta.

 Simulation result waveforms unbalanced grid condition. (a) Three phase voltage waveform. (b) Three phase current waveform.

Fig. 5. Simulation result waveforms unbalanced grid condition. (a) Three phase voltage waveform. (b) Three phase current waveform.

   

CONCLUSION:

This paper has considered the impact of an adaptive PR current control scheme of a three phase grid connected inverter. In particular, this work has shown the performance of the adaptive PR controller compared with the conventional PR controller which is popular in grid connected inverters. Simulation studies confirm that the adaptive PR controller demonstrates better performance under normal and abnormal operating conditions. There is no steady state error output, and the harmonic content of the current waveform is very low. In addition, the adaptive PR controller offers superior output power regulation, and improved power quality performance. Overall, it can be concluded that the adaptive PR controller is better suited in the event of grid faults, or operation in weak grid environments, compared to fix gain controllers.

 

REFERENCES:

  • Wuhua and H. Xiangning, “Review of Nonisolated High-Step-Up DC/DC Converters in Photovoltaic Grid-Connected Applications,” Industrial Electronics, IEEE Transactions on, vol. 58, pp. 1239-1250, 2011.
  • Chenlei, R. Xinbo, W. Xuehua, L. Weiwei, P. Donghua, and W. Kailei, “Step-by-Step Controller Design for LCL-Type Grid- Connected Inverter with Capacitor–Current-Feedback Active-Damping,” Power Electronics, IEEE Transactions on, vol.29, pp. 1239-1253, 2014.
  • “IEEE Standard for Interconnecting Distributed Resources With Electric Power Systems,” IEEE Std 1547-2003, 0_1-16, 2003.
  • Nicastri and A. Nagliero, “Comparison and evaluation of the PLL techniques for the design of the grid-connected inverter systems,” in Industrial Electronics (ISIE), 2010 IEEE International Symposium on, 2010, pp. 3865-3870.

  • Related Links
  • Projects List
  • BE/BTech Projects
  • Power Electronics Projects
  • Power Systems Projects
  • Renewable Energy Projects
  • Electric Machines and Drives Projects

A Novel Three-Phase Three-Leg AC/AC Converter Using Nine IGBTs

ABSTRACT:

This paper proposes a novel three-phase nine-switch ac/ac converter topology. This converter features sinusoidal inputs and outputs, unity input power factor, and more importantly, low manufacturing cost due to its reduced number of active switches. The operating principle of the converter is elaborated; its modulation schemes are discussed. Simulated semiconductor loss analysis and comparison with the back-to-back two-level voltage source converter are presented. Finally, experimental results from a 5-kVA prototype system are provided to verify the validity of the proposed topology.

 

KEYWORDS:

  1. AC/AC converter
  2. pulse width modulation (PWM)
  3. reduced switch count topology

 

SOFTWARE: MATLAB/SIMULINK

CIRCUIT DIAGRAM:Fig: 1 B2B 2L-VSC.

Fig: 2 Proposed nine switch ac to ac converter with a quasi dc link

 

EXPECTED SIMULATION RESULTS:

  

Fig. 3. Measured rectifier and inverter waveforms (CF-mode operation). (a) Input and output voltages. (b) Voltage spectrum. (c) Input and output currents.

Fig. 4. Measured waveforms and spectrum (VF mode operation). (a) Input and output voltages. (b) Spectrum.

Fig. 5. Measured waveforms when the inverter output frequency has a step increase from 30 to 120 Hz, while the rectifier input frequency remains at 60 Hz. (a) Input and output voltages. (b) Input and output currents.

 

CONCLUSION:

A novel nine-switch PWMac/ac converter topology was proposed in this paper. The topology uses only nine IGBT devices for ac to ac conversion through a quasi dc-link circuit. Compared with the conventional back-to-back PWM VSC using 12 switches and the matrix converter that uses 18, the number of switches in the proposed converter is reduced by 33% and 50%, respectively. The proposed converter features sinusoidal inputs and outputs, unity input power factor, and low manufacturing cost. The operating principle of the converter was elaborated, and modulation schemes for constant and VF operations were developed. Simulation results including a semiconductor loss analysis and comparison were provided, which reveal that the proposed converter, while working in CF mode, has an overall higher efficiency than the B2B 2L-VSC at the expense of uneven loss distribution. However, the VF-mode version requires IGBT devices with higher ratings and dissipates significantly higher losses, and thus, is not as attractive as its counterpart. Experimental verification is carried out on a 5-kVA prototype system.

 

REFERENCES:

 Wu, High-power Converters and AC Drives. Piscataway, NJ: IEEE/Wiley, 2006.

  • Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of three-phase improved power quality AC– DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641–660, Jun. 2004.
  • Blaabjerg, S. Freysson, H. H. Hansen, and S. Hansen, “A new optimized space-vector modulation strategy for a component-minimized Voltage source inverter,” IEEE Trans. Power Electron., vol. 12, no. 4, pp. 704–714, Jul. 1997.
  • L. A. Ribeiro, C. B. Jacobina, E. R. C. da Silva, and A. M. N. Lima, “AC/AC converter with four switch three phase structures,” in Proc. IEEE PESC, 1996, vol. 1, pp. 134–139.

A FACTS Device Distributed Power Flow Controller (DPFC)

ABSTRACT:

This paper presents a new component within the flexible ac-transmission system (FACTS) family, called distributed power-flow controller (DPFC). The DPF Controller is derived from the unified power-flow controller (UPFC). The DPFC can be considered as a UPFC with an eliminated common dc link. The active power exchange between the shunt and series converters, which is through the common dc link in the UPFC, is now through the transmission lines at the third- harmonic frequency. The DPFC employs the distributed FACTS (D-FACTS) concept, which is to use multiple small-size single-phase converters instead of the one large-size three-phase series converter in the UPFC. The large number of series converters provides redundancy, thereby increasing the system reliability. As the D-FACTS converters are single-phase and floating with respect to the ground, there is no high-voltage isolation required between the phases. Accordingly, the cost of the DPFC system is lower than the UPFC. The DPFC has the same control capability as the UPFC, which comprises the adjustment of the line impedance, the transmission angle, and the bus voltage. The principle and analysis of the DPFC are presented in this paper and the corresponding experimental results that are carried out on a scaled prototype are also shown.

 

KEYWORDS:

  1. AC–DC power conversion
  2. Load flow control
  3. Power electronics
  4. Power semiconductor devices
  5. Power-transmission

 

SOFTWARE: MATLAB/SIMULINK

 

BLOCK DIAGRAM:

facts device

Fig. 1. DPFC control block diagram.

 

EXPECTED SIMULATION RESULTS:

 Fig. 2. DPFC operation in steady state: line current.       

               

Fig. 3. DPFC operation in steady sta te:series converter voltage.

Fig. 4. DPFC operation in steady state: bus

Fig. 5. Reference voltage for the series converters. voltage and current at the Δ side of the transformer


Fig. 6. Step response of the DPFC: series converter

Fig. 7. Step response of the DPFC: linecurrent. voltage.

Fig. 8. Step response : active and reactive power injected by the series converter at the fundamental frequency.

Fig.9. Step response: bus voltage and current at the Δ of the transformer

 

CONCLUSION:

 This paper has presented a new concept called Distributed power flow controller. It emerges from the UPFC and inherits the control capability of the UPFC, which is the simultaneous adjustment of the line impedance, the transmission angle, and the bus-voltage magnitude. The common dc link between the shunt and series converters, which is used for exchanging active power in the UPFC, is eliminated. This power is now transmitted through the transmission line at the third-harmonic frequency. The series converter of the DPFC employs the D-FACTS concept, which uses multiple small single-phase converters instead of one large-size converter. The reliability of the DPFC is greatly increased because of the redundancy of the series converters. The total cost of this controller is also much lower than the UPFC, because no high-voltage isolation is required at the series-converter part and the rating of the components of is low. The DPFC concept has been verified by an experimental setup. It is proved that the shunt and series converters in the DPFC can exchange active power at the third-harmonic frequency, and the series converters are able to inject controllable active and reactive power at the fundamental frequency.

 

REFERENCES:

 -H. Song and A. Johns, Flexible ac Transmission Systems (FACTS) (IEE Power and Energy Series), vol. 30. London, U.K.: Institution of Electrical Engineers, 1999.

  • G. Hingorani and L. Gyugyi, Understanding FACTS : Concepts and Technology of Flexible AC Transmission Systems. New York: IEEE Press, 2000.
  • Gyugyi, C.D. Schauder, S. L.Williams, T. R. Rietman,D. R. Torgerson, andA. Edris, “The unified power flowcontroller:Anewapproach to power transmission control,” IEEE Trans. Power Del., vol. 10, no. 2, pp. 1085–1097, Apr. 1995.
  • -A. Edris, “Proposed terms and definitions for flexible ac transmission system (facts),” IEEE Trans. Power Del., vol. 12, no. 4, pp. 1848–1853, Oct. 1997.
  • K. Sen, “Sssc-static synchronous series compensator: Theory, modeling, and application,” IEEE Trans. Power Del., vol. 13, no. 1, pp. 241–246, Jan. 1998.

Simulation a Shunt Active Power Filter using MATLAB /SIMULINK

ABSTRACT:

 Along with increasing demand on improving power quality, the most popular technique that has been used is Active Power Filter (APF); this is because APF can easily eliminate unwanted harmonics, improve power factor and overcome voltage sags. This paper will discuss and analyze the simulation result for a three-phase shunt active power filter using MATLAB/SIMULINK program. This simulation will implement a non-linear load and compensate line current harmonics under balance and unbalance load. As a result of the simulation, it is found that an active power filter is the better way to reduce the total harmonic distortion (THD) which is required by quality standards IEEE-519.

 

KEYWORDS:

  1. APF
  2. d-q theorem,
  3. THD
  4. Power Quality
  5. ADS
  6. Instantaneous Power theory

 

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:

shunt active power filter Fig.1. Diagram illustrating component of shunt connected active filter with the waveform showing cancellation of harmonics from an ASD load.

 

SIMULATION RESULTS:

Fig. 2. Three phase line voltage  

                               Fig. 3. Three phase line current

Fig. 4. Three phase load current

                                          Fig. 5. Active filter current

Fig. 6. Line current for phase A

Fig. 7. Load current for phase A

                                   

Fig. 8. Active filter current for phase A

Fig. 9. THD for line current

Fig. 10. THD for load current

 

CONCLUSION:

The Increasing usage of non-linear load in electrical power system which will produce the current and voltage harmonics and associate harmonics problem in power system become more serious and directly affecting the power quality. Conventional way of harmonics elimination by using passive filter might suffer from parasitic problem. It has been shown that three phase active filter based on p-q theory can be implemented for harmonic mitigation and power factor correction. Harmonics mitigation carried out by the active filter meets the IEEE-519 standard requirements.

 

REFERENCES:

 Emadi, A. Nasiri, and S. B. Bekiarov, “Uninterruptible Power Supplies and Active Filter”, Florida, 2005, pp. 65-111.

  • W. Hart, “Introduction to Power Electronics”, New Jersey, 1997, pp. 291-335.
  • McGranaghan, “Active Filter Design and Specification for Control of Harmonics in Industrial and Commercial Facilities”, 2001.
  • Round, H. Laird and R. Duke, “An Improved Three-Level Shunt Active Filter”, 2000.
  • Lev-Ari, “Hilbert Space Techniques for Modeling and Compensation of Reactive Power in Energy Processing Systems”, 2003.

Speed Control of Induction Motor Using New Sliding Mode Control Technique

ABSTRACT

Induction Motors have been used as the workhorse in the industry for a long time due to its easy build, high robustness, and generally satisfactory efficiency. However, they are significantly more difficult to control than DC motors. One of the problems which might cause unsuccessful attempts for designing a proper controller would be the time varying nature of parameters and variables which might be changed while working with the motion systems. One of the best suggested solutions to solve this problem would be the use of Sliding Mode Control (SMC). This paper presents the design of a new controller for a vector control induction motor drive that employs an outer loop speed controller using SMC. Several tests were performed to evaluate the performance of the new controller method, and two other sliding mode controller techniques. From the comparative simulation results, one can conclude that the new controller law provides high performance dynamic characteristics and is robust with regard to plant parameter variations.

 

KEYWORDS:

  1. Induction Motor
  2. Sliding Mode Control
  3. DC Motors
  4. PI Controller

 

SOFTWARE: MATLAB/SIMULINK

 

BLOCK DIAGRAM:

Induction motor drive system with sliding mode controller

Fig. 1 Induction motor drive system with sliding mode controller

EXPECTED SIMULATION RESULTS:

                           Rotor speed tracking performance (b)Rotor speed tracking error (c)Control effort Rotor speed tracking performance (b)Rotor speed tracking error (c)Control effort Rotor speed tracking performance (b)Rotor speed tracking error (c)Control effort

Fig.2 (a)Rotor speed tracking performance  (b)Rotor speed tracking error   (c)Control effort

image005 image006 image007

Fig.3 (a)Rotor speed tracking performance  (b)Rotor speed tracking error   (c)Control effort

image008 image009 image010

Fig.4 (a)Rotor speed tracking performance  (b)Rotor speed tracking error   (c)Control effort

 

CONCLUSION

In this paper, new technique to reduced chattering for sliding mode control is submitted to design the rotor speed control of induction motor. To validate the performances of the new proposed control law, we provided a series of simulations and a comparative study between the performances of the new proposed sliding mode controller strategy and those of the Pseudo and Saturation sliding mode controller techniques. The sliding mode controller algorithms are capable of high precision rotor speed tracking. From the comparative simulation results, one can conclude that the three sliding mode controller techniques demonstrate nearly the same dynamic behavior under nominal condition. Also, from the simulation results, it can be seen obviously that the control performance of the new sliding mode controller strategy in the rotor speed tracking, robustness to parameter variations is superior to that of the other sliding mode controller techniques.

 

REFERENCES

  1. Wade, M.W.Dunnigan, B.W.Williams, X.Yu, ‘Position control of a vector controlled induction machine using slotine’s sliding mode control’, IEE Proceeding Electronics Power Application, Vol. 145, No.3, pp.231-238, 1998.
  2. I.Utkin, ‘Sliding mode control design principles and applications to electric drives’, IEEE Transactions on Industrial Electronics, Vol.40, No.1, pp. 23-36, February 1993.
  3. K.Namdam, P.C.Sen, ‘Accessible states based sliding mode control of a variable speed drive system’, IEEE Transactions Industry Application, Vol.30, August 1995, pp.373-381.
  4. Krishnan, ‘Electric motor drives: modelling, analysis, and control’, Prentice-Hall, New-Jersey, 2001.
  5. J.Wai, K.H.Su, C.Y.Tu, ‘Implementation of adaptive enhanced fuzzy sliding mode control for indirect field oriented induction motor drive’, IEEE International Conference on Fuzzy Systems, pp.1440-1445, 2003.

 

BTech, MTech, IEEE Electrical Projects using Matlab/Simulink, Jalna, Maharashtra, India

IEEE Electrical Projects List-2015/2016/2017

Software Used: Matlab/Simulink

Areas : Power Electronics and Drives, Power Systems, Renewable Energy and sources, etc

Download

Electrical engineering is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.

Electrical engineering has now subdivided into a wide range of sub fields including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.

Electrical engineers typically hold a degree in electrical engineering or electronic engineering. Practicing engineers may have professional certification and be members of a professional body. Such bodies include the Institute of Electrical and Electronics Engineers (IEEE) and the Institution of Engineering and Technology (professional society) (IET).

Electrical engineers work in a very wide range of industries and the skills required are likewise variable. These range from basic circuit theory to the management skills required of a project manager. The tools and equipment that an individual engineer may need are similarly variable, ranging from a simple voltmeter to a top end analyzer to sophisticated design and manufacturing software.

 

BTech, MTech, IEEE Electrical Projects using Matlab/Simulink, AURANGABAD, Maharashtra, India

BTech MTech IEEE ELectrical Projects List-2015/2016/2017

Software Used: Matlab/Simulink

Areas : Power Electronics and Drives, Power Systems, Renewable Energy and sources, etc

Download

Electrical engineering is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.

Electrical engineering has now subdivided into a wide range of sub fields including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.

Electrical engineers typically hold a degree in electrical engineering or electronic engineering. Practicing engineers may have professional certification and be members of a professional body. Such bodies include the Institute of Electrical and Electronics Engineers (IEEE) and the Institution of Engineering and Technology (professional society) (IET).

Electrical engineers work in a very wide range of industries and the skills required are likewise variable. These range from basic circuit theory to the management skills required of a project manager. The tools and equipment that an individual engineer may need are similarly variable, ranging from a simple voltmeter to a top end analyzer to sophisticated design and manufacturing software.

BTech MTech IEEE Electrical Projects

btech mtech ieee electrical projects

BTECH, MTECH, MATLAB/SIMULINK IEEE ELECTRICAL PROJECTS, AKOLA, MAHARASHTRA, INDIA

Latest IEEE ELectrical Projects List-2015/2016/2017

Software Used: Matlab/Simulink

Areas : Power Electronics and Drives, Power Systems, Renewable Energy and sources, etc

Download

ELECTRICAL ENGINEERING is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.

Electrical engineering has now subdivided into a wide range of sub fields including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.

POWER ELECTRONICS is the application of solid-state electronics to the control and conversion of electric power. The first high power electronic devices were mercury-arc valves. In modern systems the conversion is performed with semiconductor switching devices such as diodes, thyristors and transistors, pioneered by R. D. Middlebrook and others beginning in the 1950s. In contrast to electronic systems concerned with transmission and processing of signals and data, in power electronics substantial amounts of electrical energy are processed. An AC/DC converter (rectifier) is the most typical power electronics device found in many consumer electronic devices, e.g. television sets, personal computers, battery chargers, etc. The power range is typically from tens of watts to several hundred watts. In industry a common application is the variable speed drive (VSD) that is used to control an induction motor. The power range of VSDs start from a few hundred watts and end at tens of megawatts.

An ELECTRIC POWER SYSTEM is a network of electrical components deployed to supply, transfer, and use electric power. An example of an electric power system is the the grid that provides power to an extended area. An electrical grid power system can be broadly divided into the generators that supply the power, the transmission system that carries the power from the generating centres to the load centres, and the distribution system that feeds the power to nearby homes and industries. Smaller power systems are also found in industry, hospitals, commercial buildings and homes. The majority of these systems rely upon three-phase AC power—the standard for large-scale power transmission and distribution across the modern world. Specialised power systems that do not always rely upon three-phase AC power are found in aircraft, electric rail systems, ocean liners and automobiles.

MATLAB (matrix laboratory) is a multi-paradigm numerical computing environment and fourth-generation programming language. A proprietary programming language developed by MathWorks, MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages, including C, C++, C#, Java, Fortran and Python.

SIMULINK, developed by MathWorks, is a graphical programming environment for modeling, simulating and analyzing multidomain dynamic systems. Its primary interface is a graphical block diagramming tool and a customizable set of block libraries. It offers tight integration with the rest of the MATLAB environment and can either drive MATLAB or be scripted from it. Simulink is widely used in automatic control and digital signal processing for multidomain simulation and Model-Based Design.

AKOLA, MAHARASHTRA, INDIA

BTech, MTech, IEEE Electrical Projects using Matlab/Simulink Maharashtra, India

latest IEEE Electrical Projects Maharashtra

Latest IEEE ELectrical Projects List-2015/2016/2017

Software Used: Matlab/Simulink

Areas : Power Electronics and Drives, Power Systems, Renewable Energy and sources, etc

Download

latest IEEE Electrical Projects Maharashtra

ELECTRICAL ENGINEERING is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.

Electrical engineering has now subdivided into a wide range of sub fields including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.

POWER ELECTRONICS is the application of solid-state electronics to the control and conversion of electric power. The first high power electronic devices were mercury-arc valves. In modern systems the conversion is performed with semiconductor switching devices such as diodes, thyristors and transistors, pioneered by R. D. Middlebrook and others beginning in the 1950s. In contrast to electronic systems concerned with transmission and processing of signals and data, in power electronics substantial amounts of electrical energy are processed. An AC/DC converter (rectifier) is the most typical power electronics device found in many consumer electronic devices, e.g. television sets, personal computers, battery chargers, etc. The power range is typically from tens of watts to several hundred watts. In industry a common application is the variable speed drive (VSD) that is used to control an induction motor. The power range of VSDs start from a few hundred watts and end at tens of megawatts.

An ELECTRIC POWER SYSTEM is a network of electrical components deployed to supply, transfer, and use electric power. An example of an electric power system is the the grid that provides power to an extended area. An electrical grid power system can be broadly divided into the generators that supply the power, the transmission system that carries the power from the generating centres to the load centres, and the distribution system that feeds the power to nearby homes and industries. Smaller power systems are also found in industry, hospitals, commercial buildings and homes. The majority of these systems rely upon three-phase AC power—the standard for large-scale power transmission and distribution across the modern world. Specialised power systems that do not always rely upon three-phase AC power are found in aircraft, electric rail systems, ocean liners and automobiles.

MATLAB (matrix laboratory) is a multi-paradigm numerical computing environment and fourth-generation programming language. A proprietary programming language developed by MathWorks, MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages, including C, C++, C#, Java, Fortran and Python.

SIMULINK, developed by MathWorks, is a graphical programming environment for modeling, simulating and analyzing multidomain dynamic systems. Its primary interface is a graphical block diagramming tool and a customizable set of block libraries. It offers tight integration with the rest of the MATLAB environment and can either drive MATLAB or be scripted from it. Simulink is widely used in automatic control and digital signal processing for multidomain simulation and Model-Based Design.

latest IEEE Electrical Projects Maharashtra

IEEE Electrical Engineering Projects for BTech and MTech

Asoka Technologies (IEEE electrical engineering projects)                                                           (B.TECH/M.TECH IEEE ELECTRICAL ENGINEERING PROJECTS USING MATLAB/SIMULINK)
WE OFFER ACADEMIC MATLAB SIMULATION PROJECTS FOR
1. ELECTRICAL AND ELECTRONICS ENGINEERING [EEE]
2. POWER ELECTRONICS AND DRIVES [PED]
3. POWER SYSTEMS [PS]….etc

We will develop your OWN IDEAS and your IEEE Papers with extension if necessary and also we give guidance for publishing papers…

For Further Details Call Us :

0-9347143789/9949240245

For Abstracts of IEEE papers and for any Queries mail to: asokatechnologies@gmail.com and also visit our Blog: www.asokatechnologies.blogspot.com and website www.asokatechnologies.in for more IEEE

IEEE Electrical engineering projects.

 

Electrical engineers typically hold a degree in electrical engineering or electronic engineering. Practicing engineers may have professional certification and be members of a professional body. Such bodies include the Institute of Electrical and Electronics Engineers (IEEE) and the Institution of Engineering and Technology (professional society) (IET).

Electrical engineers work in a very wide range of industries and the skills required are likewise variable. These range from basic circuit theory to the management skills required of a project manager. The tools and equipment that an individual engineer may need are similarly variable, ranging from a simple voltmeter to a top end analyzer to sophisticated design and manufacturing software.

BTech and MTech EEE projects  can be done in different domains. They are power electronics and drives,  power systems, electrical machines and drives etc. Each of these domains use many technologies and areas.

We understand the importance of IEEE papers for BTech and M.Tech EEE projects. Hence we hand pick IEEE projects for BTech and M.Tech EEE. We ensure that the IEEE papers and projects have enough scope for a two semister project work or for a final year project work. If needed an improvement over the simulated results by newer and better techniques for MTech EEE can also be done. The Matlab / Simulink software is used for doing EEE projects. We do give guidance for paper writing and suggest journals.

BTech and MTech EEE projects of various domains are available at Asoka Technologies. We also develop your own ideas. We deliver the projects within the time frame given by the students. Visit our website and blogspot for more papers.