Research on the Unbalanced Compensation of Delta-connected Cascaded H-bridge Multilevel SVG

ABSTRACT:

The paper presents the application of Delta- connected cascaded H-bridge multilevel SVG under unbalanced compensation currents or unbalanced supply voltages. Clustered balancing control for delta-connected SVG can be realized by injecting a zero-sequence current to the delta-loop. But zero-sequence current injection may cause the high peak phase current which may break converter switches. The aim of this paper is to analyze the key factors that affect the maximum output current of the SVG with injecting zero-sequence current and acquire the  quantitative relationship between unbalance compensation capability, the unbalance degree of the supply voltage, the initial phase of negative-sequence voltage, the unbalance degree of the compensation current and the initial phase of negative-sequence current. On this foundation, the valid compensation range of delta-connected SVG under unbalanced conditions is obtained. Furthermore, the compensation characteristic of the negative-sequence current is deduced with the certain supply voltage and the influence of supply voltage variation on the maximum output current for SVG is also considered with the certain compensation current. Finally, the correctness of the relevant theoretical analysis is verified by simulation and experiment.

 

KEYWORDS:

  1. Delta-connected cascaded H-bridge multilevel SVG
  2. Zero-sequence current
  3. Unbalance degree

 

SOFTWARE: MATLAB/SIMULINK

 

BLOCK DIAGRAM:

Fig.1. Delta-connected cascaded H-bridge multilevel SVG system configuration

EXPECTED SIMULATION RESULTS: 

 (a) Ki increased from 0 to 20%

(b) Ki increased from 20% to 50%

(c) Ki decreased from 50% to 20% and Ku increased from 0 to 10%

(d) Ku increased from 10% to 40%

Fig.2 Partial enlargement waveforms during sudden change of unbalance degree

 

CONCLUSION:

In this paper, the effect of unbalanced supply voltage and compensation current on the delta-connected SVG has been analyzed. Injecting zero-sequence current into the delta-loop allows maintaining cluster voltage balancing for the SVG. However, it has been shown that zero-sequence current injection may cause the high peak phase current which may break converter switches. In order to guarantee safe and reliable operation of the delta-connected SVG, whose maximum output current level Imax/Ip is chosen as the standard to measured its unbalance compensation capability and the valid compensation range under unbalanced conditions can also be obtained. The unbalance compensation range of the delta-connected structure is limited by the unbalance degree of the supply voltage, the initial phase of negative-sequence voltage, the unbalance degree of the compensation current and the initial phase of negative-sequence current. The quantitative relationship between unbalance compensation capability and other influence factors derived in this paper can provide a good theoretical basis for the parameter design and device selection of the delta-connected cascaded H-bridge multilevel SVG. In addition, the delta-connected SVG is more sensitive to the unbalance degree of the supply voltage than the unbalance degree of the compensation current, and it will be better way for industrial applications aiming at improving the power quality. The simulation and experimental results further verified the rationality and accuracy of the analysis.

  

REFERENCES:

  • Akagi, “Classification, Terminology, and Application of the Modular Multilevel Cascade Converter (MMCC),” IEEE Transactions on Power Electronics, vol. 26, no. 11, pp. 3119-3130, Nov. 2011.
  • Z. Peng and Jih-Sheng Lai, “Dynamic performance and control of a static VAr generator using cascade multilevel inverters,” IEEE Transactions on Industry Applications, vol. 33, no. 3, pp. 748-755, May/Jun 1997.
  • K. Lee, J. S. K. Leung, S. Y. R. Hui and H. S. H. Chung, “Circuit-level comparison of STATCOM technologies,” Power Electronics Specialist Conference, 2003. PESC ’03. 2003 IEEE 34th Annual, 2003, pp. 1777-1784 vol.4.
  • Z. Peng and Jin Wang, “A universal STATCOM with delta-connected cascade multilevel inverter,” 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551), 2004, pp. 3529-3533 Vol.5.
  • Maharjan, S. Inoue, H. Akagi and J. Asakura, “A transformerless battery energy storage system based on a multilevel cascade PWM converter,” 2008 IEEE Power Electronics Specialists Conference, Rhodes, 2008, pp. 4798-4804.

Single-phase hybrid cascaded H-bridge and diode-clamped multilevel inverter with capacitor voltage balancing

ABSTRACT:

Diode-clamped and cascaded H-bridge multilevel inverters are two of the main multilevel inverter topologies; each has its distinct advantages and drawbacks. Regarding the latter, cascaded H-bridge inverters require multiple separate dc sources, whereas (semi-active) diode-clamped inverters contain capacitors that require a means to balance their voltages. This paper investigates a hybrid-topology inverter, comprising a single-phase five-level semi-active diode-clamped inverter and a single-phase cascaded H-bridge inverter with their outputs connected in series, as one way to mitigate the drawbacks of each topology. The proposed control scheme for this inverter operates the switches at fundamental frequency to achieve capacitor voltage-balancing while keeping the switching losses low. Moreover, the step-angles are designed for the 13-level and 11-level output voltage waveform cases (as examples) for a fixed modulation index to achieve optimal total harmonic distortion. Furthermore, the scheme also achieves capacitor voltage-balancing for modulation indices that are close to the optimal modulation index, and for a wide range of load power factors, albeit at the cost of increased output voltage distortion. Simulation results are presented to help explain the processes of capacitor recharging and voltage-balancing, while experimental results are shown as verification of the expected behaviour of this inverter and the proposed control scheme.

 

SOFTWARE: MATLAB/SIMULINK

  

BLOCK DIAGRAM:

 

Fig. 1. Five-level 1ϕ-DCMLI with semi-active front end

  

EXPECTED SIMULATION RESULTS:

Fig. 2 Simulated 13-level hybrid inverter output Vload (with waveform alternating between RM and DM cycle patterns), and capacitor voltages vc1, vc2, vc3 and vc4

Fig. 3. Simulated 13-level hybrid inverter output Vload (with waveform always in DM cycle pattern), and capacitor voltages vc1, vc2, vc3 and vc4

Fig. 4. Normalised harmonic spectra of the Vload waveforms obtained for the ideal, simulated and measured cases For RM operation, (b) For DM operation

Fig. 5: Simulation and test results for the 13-level hybrid inverter with various load PFs (a) 0 PF leading, (b) 0.1 PF lagging, (c) 0.95 PF leading

Fig. 6: Simulation and test results for the 13-level hybrid inverter with 0.95 lagging PF load (a) Simulated transition from RM to DM, and back to RM, (b) Measured transition from RM to DM, and back to RM

 

CONCLUSION:

This paper has described the operation of a hybrid inverter comprised of a five-level 1ϕ-DCMLI with a semi-active front end connected in series with either a nine-level 1ϕ-CHBMLI or a seven-level 1ϕ-CHBMLI to produce a staircase waveform with either 13-levels or 11-levels, respectively. The key contribution is a novel fundamental-frequency modulation scheme for the DCMLI’s switches so as to charge up its inner dc-link capacitors from the CHBMLI’s dc sources, and thereby achieve capacitor voltage balancing via an alternation between a RM and a DM based on capacitor voltage feedback with a hysteresis band. Both simulation and experimental results have been presented herein to substantiate this hybrid-topology inverter’s good performance when operated using the proposed modulation and feedback control schemes at an optimal modulation index with unity PF loads. Furthermore, the scheme also achieves capacitor voltage balancing for modulation indices that span at least 10% above and below the optimal modulation index, and for a wide range of load PFs, albeit at the cost of increased output voltage distortion. While (fundamental-frequency) staircase modulation of the DCMLI has the advantage of lower switching losses and higher power efficiency compared with (high-frequency) pulse-width modulation, the accompanying drawback is it requires large capacitances to prevent overcharging, and also too-rapid discharging, of the capacitors due to the long charging and discharging durations. Future work will consider pulse-width modulation of the hybrid inverter, especially for variable instead of fixed modulation index applications, and for supplying lagging PF loads.

 

REFERENCES:

  • Hayden, C.L.: ‘Peak shaving via emergency generator’. Proc. Int. Telecom. Energy Conf., 1979, pp. 316–318
  • ‘Non-Road mobile machinery emissions – European Commission’. Available at https://ec.europa.eu/growth/sectors/automotive/environment-protection/ non-road-mobile-machinery_en, accessed 9 August 2017
  • ‘FACT SHEET: Final Amendments to Emission Standards | U.S. EPA’. Available at https://www.epa.gov/stationary-engines/fact-sheet-finalamendments- emission-standards, accessed 9 August 2017
  • Baker, R.H., Bannister, L.H.: ‘Electric power converter’. U.S. Patent 3867643, February 1975
  • Nabae, A., Takahashi, I., Akagi, H.: ‘A new neutral-point clamped PWM inverter’, IEEE Trans. Ind. Appl.., 1981, IA-17, (Sept./Oct.), pp. 518–523

Control of a Three-Phase Hybrid Converter for a PV Charging Station

ABSTRACT:

Hybrid boost converter (HBC) has been proposed to replace a dc/dc boost converter and a dc/ac converter to reduce conversion stages and switching loss. In this paper, control of a three-phase HBC in a PV charging station is designed and tested. This HBC interfaces a PV system, a dc system with hybrid plugin electrical vehicles (HPEVs) and a three-phase ac grid. The control of the HBC is designed to realize maximum power point tracking (MPPT) for PV, dc bus voltage regulation, and ac voltage or reactive power regulation. A test bed with power electronics switching details is built in MATLAB/SimPowersystems for validation. Simulation results demonstrate the feasibility of the designed control architecture. Finally, lab experimental testing is conducted to demonstrate HBC’s control performance.

 

KEYWORDS:

  1. Plug-in hybrid vehicle (PHEV)
  2. Vector Control
  3. Grid-connected Photovoltaic (PV)
  4. Three-phase Hybrid Boost Converter
  5. Maximum Power Point Tracking (MPPT)
  6. Charging Station.

 

SOFTWARE: MATLAB/SIMULINK

 

BLOCK DIAGRAM:

Fig.1 Architecture configurations of a PV charging station. The conventional topology includes a dc/dc converter and a dc/ac VSC. These two converters will be replaced by a three-phase HBC.

 

EXPECTED SIMULATION RESULTS

 

Fig.2 Performance of CC-CV algorithm

Fig.3. Performance of a modified IC-PI MPPT algorithm when solar irradiance variation is applied.

Fig. 4. Performance of the dc voltage control in the vector control. The solid lines represent the system responses when the dc voltage control is enabled. The dashed lines represent the system responses when the dc voltage control is disabled.

Fig. 5. Performance of a proposed vector control to supply or absorb reactive power independently.

Fig. 6. Power management of PV charging station.

Fig. 7. Dst, Md and Mq for case 4.

Fig. 8.  System performance under 70% grid’s voltage drop.

 

CONCLUSION:

Control of three-phase HBC in a PV charging station is proposed in this paper. The three-phase HBC can save switching loss by integration a dc/dc booster and a dc/ac converter converter into a single converter structure. A new control for the three-phase HBC is designed to achieve MPPT, dc voltage regulation and reactive power tracking. The MPPT control utilizes modified incremental conductance-PI based MPPT method. The dc voltage regulation and reactive power tracking are realized using vector control. Five case studies are conducted in computer simulation to demonstrate the performance of MPPT, dc voltage regulator, reactive power tracking and overall power management of the PV charging station. Experimental results verify the operation of the PHEV charging station using HBC topology. The simulation and experimental results demonstrate the effectiveness and robustness of the proposed control for PV charging station to maintain continuous dc power supply using both PV power and ac grid power.

 

REFERENCES:

  • Ehsani, Y. Gao, and A. Emadi, Modern electric, hybrid electric, and fuel cell vehicles: fundamentals, theory, and design. CRC press, 2009.
  • Sikes, T. Gross, Z. Lin, J. Sullivan, T. Cleary, and J. Ward, “Plugin hybrid electric vehicle market introduction study: final report,” Oak Ridge National Laboratory (ORNL), Tech. Rep., 2010.
  • Khaligh and S. Dusmez, “Comprehensive topological analysis of conductive and inductive charging solutions for plug-in electric vehicles,” IEEE Transactions on Vehicular Technology, vol. 61, no. 8, pp. 3475–3489, 2012.
  • Anegawa, “Development of quick charging system for electric vehicle,” Tokyo Electric Power Company, 2010.
  • Musavi, M. Edington, W. Eberle, and W. G. Dunford, “Evaluation and efficiency comparison of front end ac-dc plug-in hybrid charger topologies,” IEEE Transactions on Smart grid, vol. 3, no. 1, pp. 413–421, 2012.

 

Standalone Photovoltaic Water Pumping System Using Induction Motor Drive with Reduced Sensors

ABSTRACT

A simple and efficient solar photovoltaic (PV) water pumping system utilizing an induction motor drive (IMD) is presented in this paper. This solar PV water pumping system comprises of two stages of power conversion. The first stage extracts the maximum power from a solar PV array by controlling the duty ratio of a DC-DC boost converter. The DC bus voltage is maintained by the controlling the motor speed. This regulation helps in reduction of motor losses because of reduction in motor currents at higher voltage for same power injection. To control the duty ratio, an incremental conductance (INC) based maximum power point tracking (MPPT) control technique is utilized. A scalar controlled voltage source inverter (VSI) serves the purpose of operating an IMD. The stator frequency reference of IMD is generated by the proposed control scheme. The proposed system is modeled and its performance is simulated in detail. The scalar control eliminates the requirement of speed sensor/encoder. Precisely, the need of motor current sensor is also eliminated. Moreover, the dynamics are improved by an additional speed feedforward term in the control scheme. The proposed control scheme makes the system inherently immune to the pump’s constant variation. The prototype of PV powered IMD emulating the pump characteristics, is developed in the laboratory to examine the performance under different operating conditions.

 

KEYWORDS:

  1. Photovoltaic cells
  2. MPPT
  3. Water pumping
  4. Scalar control
  5. Induction motor drives

SOFTWARE:MATLAB/SIMULINK

 

SYSTEM ARCHITECTURE:

System architechure for the standalone solar water pumping system

Fig. 1 System architechure for the standalone solar water pumping system

  

EXPECTED SIMULATION RESULTS:

Fig.2 Starting performance of the proposed system

Steady state and transient behavior of proposed system

Fig.3 Steady state and transient behavior of proposed system

Influence of the wrong estimation of pump’s constant

Fig.4 Influence of the wrong estimation of pump’s constant

A brief cost estimation of the proposed solar water pumping system

Fig. 5 A brief cost estimation of the proposed solar water pumping system

 

CONCLUSION

The standalone photovoltaic water pumping system with reduced sensor, has been proposed. It utilizes only three sensors. The reference speed generation for V/f control scheme has been proposed based on the available power the regulating the active power at DC bus. The PWM frequency and pump affinity law have been used to control the speed of an induction motor drive. Its feasibility of operation has been verified through simulation and experimental validation. Various performance conditions such as starting, variation in radiation and steady state have been experimentally verified and found to be satisfactory. The main contribution of the proposed control scheme is that it is inherently, immune to the error in estimation of pump’s constant. The system tracks the MPP with acceptable tolerance even at varying radiation.

 

REFERENCES

  • Drury, T. Jenkin, D. Jordan, and R. Margolis, “Photovoltaic investment risk and uncertainty for residential customers,” IEEE J. Photovoltaics, vol. 4, no. 1, pp. 278–284, Jan. 2014.
  • Muljadi, “PV water pumping with a peak-power tracker using a simple six-step square-wave inverter,” IEEE Trans. on Ind. Appl., vol. 33, no. 3, pp. 714-721, May-Jun 1997.
  • Sharma, S. Kumar and B. Singh, “Solar array fed water pumping system using induction motor drive,” 1st IEEE Intern. Conf. on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, 2016.
  • Franklin, J. Cerqueira and E. de Santana, “Fuzzy and PI controllers in pumping water system using photovoltaic electric generation,” IEEE Trans. Latin America, vol. 12, no. 6, pp. 1049-1054, Sept. 2014.
  • Kumar and B. Singh, “BLDC Motor-Driven Solar PV Array-Fed Water Pumping System Employing Zeta Converter,” IEEE Trans. Ind. Appl., vol. 52, no. 3, pp. 2315-2322, May-June 2016.

    Related Links

    Latest Projects List

    BE/BTech Projects

    Power Electronics Projects

    Power Systems Projects

    Renewable Energy Projects

    Electric Machines and Drives Projects

A Hysteresis Current Controller for Grid-Connected Inverter with Reduced Losses

ABSTRACT:

In this paper, a hysteresis current controller with reduced losses for three-phase grid-connected inverter is proposed. In the proposed hysteresis current controller, one of the inverter phase is clamped to the positive or negative inverter buses depending on the polarity of the phase current. Totally, each inverter phase is clamped for the duration of one third of the fundamental output period. As the inverter phase is inactive when the current is the highest, the switching losses are reduced. Simulation and experimental results are included to show the effectiveness of the proposed controller.

 

KEYWORDS:

  1. Current controller
  2. Hysteresis
  3. Grid-connected inverter,
  4. Losses
  5. Clamped

 

SOFTWARE: MATLAB/SIMULINK

  

CIRCUIT DIAGRAM:

Power controller of grid-connected inverter

Fig. 1. Power controller of grid-connected inverter

 

EXPECTED SIMULATION RESULTS:

conventional hysteresis current controller

Fig. 2. Output current and switching pattern of: (a) conventional hysteresis current controller, (b) proposed hysteresis current controller

 proposed hysteresis current controller

Fig. 3. Output current and switching pattern of: (a) conventional hysteresis current controller, (b) proposed hysteresis current controller

 

CONCLUSION:

A simple hysteresis current controller with reduced losses has been proposed in this paper. In the proposed current controller, one of the inverter phase is clamped to the positive or negative DC bus, depending on the polarity, when the magnitude of the current is the greatest. This lead to reduction of the average switching frequency as well as the switching losses. Simulation and experimental results have shown that the proposed hysteresis controller is able to reduce the switching losses without sacrificing the output current waveform.

 

REFERENCES:

  • Jain and V. Agarwal, “A Single-Stage Grid Connected Inverter Topology for Solar PV Systems With Maximum Power Point Tracking,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 1928–1940, 2007.
  • Mohseni and S. M. Islam, “A new vector-based hysteresis current control scheme for three-phase PWM voltage-source inverters,” IEEE Trans. Power Electron., vol. 25, no. 9, pp. 2299–2309, 2010.
  • P. Kazmierkowski and M. A. Dzieniakowski, “Review of currentregulation techniques for three-phase PWM inverters,” Proc. IECON’94 – 20th Annu. Conf. IEEE Ind. Electron., vol. 1, pp. 567–575, 1994.
  • Zhang and H. Lin, “Simplified model predictive current control method of voltage-source inverter,” 8th Int. Conf. Power Electron. – ECCE Asia, pp. 1726–1733, 2011.
  • C. Hua, C. W. Wu, and C. W. Chuang, “A digital predictive current control with improved sampled inductor current for cascaded inverters,” IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1718–1726, 2009.

A STATCOM-Control Scheme for Grid Connected Wind Energy System for Power Quality Improvement

ABSTRACT:

Injection of the wind power into an electric grid affects the power quality. The performance of the wind turbine and thereby power quality are determined on the basis of measurements and the norms followed according to the guideline specified in International Electro-technical Commission standard, IEC-61400. The influence of the wind turbine in the grid system concerning the power quality measurements are-the active power, reactive power, variation of voltage, flicker, harmonics, and electrical behavior of switching operation and these are measured according to national/international guidelines. The paper study demonstrates the power quality problem due to installation of wind turbine with the grid. In this proposed scheme STATic COMpensator (STATCOM) is connected at a point of common coupling with a battery energy storage system (BESS) to mitigate the power quality issues.

The battery energy storage is integrated to sustain the real power source under fluctuating wind power. The STATCOM control scheme for the grid connected wind energy generation system for power quality improvement is simulated using MATLAB/SIMULINK in power system block set. The effectiveness of the proposed scheme relives the main supply source from the reactive power demand of the load and the induction generator. The development of the grid co-ordination rule and the scheme for improvement in power quality norms as per IEC-standard on the grid has been presented.

 

KEYWORDS:

  1. International electro-technical commission (IEC)
  2. power quality
  3. wind generating system (WGS)

 

SOFTWARE: MATLAB/SIMULINK

 

BLOCK DIAGRAM:

  statcom

Fig.1.System operational scheme in grid system.

 

EXPECTED SIMULATION RESULTS:

  

Fig. 1. Three phase injected inverter Current.

Fig. 2. (a) Source Current. (b) Load Current. (c) Inverter Injected Current. (d) Wind generator (Induction generator) current.


Fig. 3. (a) DC link voltage. (b) Current through Capacitor, 
STATCOM output voltage.

Fig. 5. Supply Voltage and Current at PCC.


Fig.6.(a) Source Current. (b) FFT of source current.                

Fig.7.(a) Source Current. (b) FFT of source current

 

CONCLUSION:

The paper presents the STATCOM-based control scheme for power quality improvement in grid connected wind generating system and with non linear load. The power quality issues and its consequences on the consumer and electric utility are presented. The operation of the control system developed for the STATCOM-BESS in MATLAB/SIMULINK for maintaining the power quality is simulated. It has a capability to cancel out the harmonic parts of the load current. It maintains the source voltage and current in-phase and support the reactive power demand for the wind generator and load at PCC in the grid system, thus it gives an opportunity to enhance the utilization factor of transmission line. The integrated wind generation and STATCOM with BESS have shown the outstanding performance. Thus the proposed scheme in the grid connected system fulfills the power quality norms as per the IEC standard 61400-21.

 

REFERENCES:

 Sannino, “Global power systems for sustainable development,” in IEEE General Meeting, Denver, CO, Jun. 2004.

  • S. Hook, Y. Liu, and S. Atcitty, “Mitigation of the wind generation integration related power quality issues by energy storage,” EPQU J., vol. XII, no. 2, 2006.
  • Billinton and Y. Gao, “Energy conversion system models for adequacy assessment of generating systems incorporating wind energy,” IEEE Trans. on E. Conv., vol. 23, no. 1, pp. 163–169, 2008, Multistate.
  • Wind Turbine Generating System—Part 21, International standard-IEC 61400-21,
  • Manel, “Power electronic system for grid integration of renewable energy source: A survey,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1002–1014, 2006, Carrasco.

Improving the Dynamic Performance of Wind Farms with STATCOM

ABSTRACT:

When integrated to the power system, large wind farms can pose voltage control issues among other problems. A thorough study is needed to identify the potential problems and to develop measures to mitigate them. Although integration of high levels of wind power into an existing transmission system does not require a major redesign, it necessitates additional control and compensating equipment to enable (fast) recovery from severe system disturbances. The use of a Static Synchronous Compensator (STATCOM) near a wind farm is investigated for the purpose of stabilizing the grid voltage after grid-side disturbance such as a three phase short circuit fault. The strategy focuses on a fundamental grid operational requirement to maintain proper voltages at the point of common coupling by regulating the voltage. The DC voltage at individual wind turbine (WT) inverters is also stabilized to facilitate continuous operation of wind turbines  during disturbances.

 

KEYWORDS:

  1. Wind turbine
  2. Doubly-fed Induction Generator
  3. STATCOM
  4. Three phase fault
  5. Reactive power

 

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:

wind farm with statcom

Fig. 1. Block diagram of a Doubly-fed induction generator

Fig. 2 Test System

EXPECTED SIMULATION RESULTS: 

Fig. 3. Voltage at the fault bus (Load bus) , Voltage at the fault bus (Zoomed version)

Fig. 4. Reactive power in the system with no compensating device, Reactive power in the system with mechanically switched capacitors

Fig. 5. Reactive and active power of the 25 MVA STATCOM for Case 3, AC and DC busbar voltages of the STATCOM for Case III.

Fig. 6. Reactive and active powers of only the STATCOM for Case 4, Reactive power and terminal voltage of only the the MSC for Case 4.

Fig. 7. Reactive powers of the system with a STATCOM and MSC

Fig. 8. Reactive power of the 125 MVA STATCOM for Case 5.

 

CONCLUSION:

Wind turbines have to be able to ride through a fault without disconnecting from the grid. When a wind farm is connected to a weak power grid, it is necessary to provide efficient power control during normal operating conditions and enhanced support during and after faults. This paper explored the possibility of connecting a STATCOM to the wind power system in order to provide efficient control. An appropriately sized STATCOM can provide the necessary reactive power compensation when connected to a weak grid. Also, a higher rating STATCOM can be used for efficient voltage control and improved reliability in grid connected wind farm but economics limit its rating. Simulation studies have shown that the additional voltage/var support provided by an external device such as a STATCOM can significantly improve the wind turbine’s fault recovery by more quickly restoring voltage characteristics. The extent to which a STATCOM can provide support depends on its rating. The higher the rating, the more support provided. The interconnection of wind farms to weak grids also influences the safety of wind turbine generators. Some of the challenges faced by wind turbines connected to weak grids are an increased number and frequency of faults, grid abnormalities, and voltage and frequency fluctuations that can trip relays and cause generator heating.

 

REFERENCES:

  • http://www.awea.org/newsroom/releases/Wind_Power_Capacity_012307. html, accessed Nov. 2007.
  • Sun, Z. Chen, F. Blaabjerg, “Voltage recovery of grid-connected wind turbines with DFIG after a short-circuit fault,” 2004 IEEE 35th Annual Power Electronics Specialists Conf., vol. 3, pp. 1991-97, 20-25 June 2004.
  • Muljadi, C.P. Butterfield, “Wind Farm Power System Model Development,” World Renewable Energy Congress VIII, Colorado, Aug- Sept 2004.
  • M. Muyeen, M.A. Mannan, M.H. Ali, R. Takahashi, T. Murata, J. Tamura, “Stabilization of Grid Connected Wind Generator by STATCOM,” IEEE Power Electronics and Drives Systems Conf., Vol. 2, 28-01 Nov. 2005.
  • Saad-Saoud, M.L. Lisboa, J.B. Ekanayake, N. Jenkins, G. Strbac, “Application of STATCOMs to wind farms,” IEE Proceedings – Generation, Transmission, Distribution, vol. 145, pp.1584-89, Sept 1998.

Top Best Electrical Projects

ELECTRICAL PROJECTS USING MATLAB/SIMULINK
asokatechnologies@gmail.com
ACADEMIC MATLAB SIMULATION PROJECTS FOR
 ELECTRICAL AND ELECTRONICs ENGINEERING[EEE]
 POWER ELECTRONICs AND DRIVES[PED]
 POWER SYSTEMS [PS]….
We Can also Develop Your Own Ideas and Your IEEE Papers With
Extension also…
We also write papers for your projects and give guidance for paper
publishing.
For Further Details Call Us @
0-9347143789/9949240245
Visit us at: www.asokatechnologies.in
For Abstracts of IEEE papers and For Any Queries
Mail us : asokatechnologies@gmail.com

Electrical engineering is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.

Electrical engineering has now subdivided into a wide range of sub fields including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.

Electrical engineers typically hold a degree in electrical engineering or electronic engineering. Practicing engineers may have professional certification and be members of a professional body. Such bodies include the Institute of Electrical and Electronics Engineers (IEEE) and the Institution of Engineering and Technology (professional society) (IET).

Electrical engineers work in a very wide range of industries and the skills required are likewise variable. These range from basic circuit theory to the management skills required of a project manager. The tools and equipment that an individual engineer may need are similarly variable, ranging from a simple voltmeter to a top end analyzer to sophisticated design and manufacturing software.

 

Electrical Engineering Projects

Electrical engineering

Electrical engineering is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.

Electrical engineering has now subdivided into a wide range of sub fields including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.

Electrical engineers typically hold a degree in electrical engineering or electronic engineering. Practicing engineers may have professional certification and be members of a professional body. Such bodies include the Institute of Electrical and Electronics Engineers (IEEE) and the Institution of Engineering and Technology (professional society) (IET).

Electrical engineers work in a very wide range of industries and the skills required are likewise variable. These range from basic circuit theory to the management skills required of a project manager. The tools and equipment that an individual engineer may need are similarly variable, ranging from a simple voltmeter to a top end analyzer to sophisticated design and manufacturing software.

post

IEEE Electrical projects training and development

Electrical engineering is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.

Electrical engineering has now subdivided into a wide range of sub fields including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.

Electrical engineers typically hold a degree in electrical engineering or electronic engineering. Practicing engineers may have professional certification and be members of a professional body. Such bodies include the Institute of Electrical and Electronics Engineers (IEEE) and the Institution of Engineering and Technology (professional society) (IET).

Electrical engineers work in a very wide range of industries and the skills required are likewise variable. These range from basic circuit theory to the management skills required of a project manager. The tools and equipment that an individual engineer may need are similarly variable, ranging from a simple voltmeter to a top end analyzer to sophisticated design and manufacturing software.

 

Asoka Technologies