IEEE Electrical Projects for BTech/MTech in india

IEEE ELECTRICAL PROJECTS

IEEE Electrical projects The best electrical activities for confirmation understudies for their last year scholastics. Normally electrical recognition ventures are engaged with working force plants in productive way, machines controlling like engines and generators, and taking care of intensity framework supplies, and power electronic convertors, and so on.

ACADEMIC MATLAB SIMULATION PROJECTS FOR
ELECTRICAL AND ELECTRONICs ENGINEERING[EEE]
POWER ELECTRONICs AND DRIVES[PED]
POWER SYSTEMS [PS]….
We Can also Develop Your Own Ideas and Your IEEE Papers With Extension also…
We also write papers for your projects and give guidance for paper publishing.
For Further Details Call Us @
0-9347143789/9949240245
Visit us at: www.asokatechnologies.in
For Abstracts of IEEE papers and For Any Queries
Mail us :asokatechnologies@gmail.com

AT18-01 An Improved Current-Limiting Strategy for Shunt Active Power Filter (SAPF) Using Particle Swarm Optimization (PSO)

2 AT18-02 Transformerless Z-Source Four-Leg PV Inverter with Leakage Current Reduction

3 AT18-03 Ensuring Power Quality and Stability in Industrial and Medium Voltage Public Grids

4 AT18-04 A BL-CSC Converter Fed BLDC Motor Drive with Power Factor Correction 

5 AT18-05 Dual-Buck AC–AC Converter with Inverting and Non-Inverting Operations 

6 AT18-06 Self-tuned fuzzy-proportional–integral compensated zero/minimum active power algorithm based dynamic voltage restorer

Final Year Projects for BTech/MTech using Matlab/Simulink in rangareddy

Final Year Projects for BTech/MTech using Matlab/Simulink in rangareddy.

Software Used: Matlab/Simulink
Areas : Power Electronics and Drives, Power Systems, Renewable Energy and sources, etc
Download
Contact us:
email: asokatechnologies@gmail.com
website: www.asokatechnologies.in
Asoka technologies provide Final Year Projects for BTech/MTech using Matlab/Simulink in rangareddy

Final Year Projects ELECTRICAL ENGINEERING is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.

Electrical engineering has now subdivided into a wide range of sub fields including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.
Final Year Projects POWER ELECTRONICS is the application of solid-state electronics to the control and conversion of electric power. The first high power electronic devices were mercury-arc valves. In modern systems the conversion is performed with semiconductor switching devices such as diodes, thyristors and transistors, pioneered by R. D. Middlebrook and others beginning in the 1950s. In contrast to electronic systems concerned with transmission and processing of signals and data, in power electronics substantial amounts of electrical energy are processed. An AC/DC converter (rectifier) is the most typical power electronics device found in many consumer electronic devices, e.g. television sets, personal computers, battery chargers, etc. The power range is typically from tens of watts to several hundred watts. In industry a common application is the variable speed drive (VSD) that is used to control an induction motor. The power range of VSDs start from a few hundred watts and end at tens of megawatts.

Final Year Projects

Power Electronics, Power Systems Projects for MTech using Matlab/Simulink in suryapet

Power Electronics, Power Systems Projects for MTech using Matlab/Simulink in suryapet.

Software Used: Matlab/Simulink
Areas : Power Electronics and Drives, Power Systems, Renewable Energy and sources, etc
Download
Contact us:
email: asokatechnologies@gmail.com
website: www.asokatechnologies.in
Asoka technologies provide Power Electronics, Power Systems Projects for MTechusing Matlab/Simulink in suryapet.

ELECTRICAL ENGINEERING is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.
Electrical engineering has now subdivided into a wide range of sub fields including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.
POWER ELECTRONICS is the application of solid-state electronics to the control and conversion of electric power. The first high power electronic devices were mercury-arc valves. In modern systems the conversion is performed with semiconductor switching devices such as diodes, thyristors and transistors, pioneered by R. D. Middlebrook and others beginning in the 1950s. In contrast to electronic systems concerned with transmission and processing of signals and data, in power electronics substantial amounts of electrical energy are processed. An AC/DC converter (rectifier) is the most typical power electronics device found in many consumer electronic devices, e.g. television sets, personal computers, battery chargers, etc. The power range is typically from tens of watts to several hundred watts. In industry a common application is the variable speed drive (VSD) that is used to control an induction motor. The power range of VSDs start from a few hundred watts and end at tens of megawatts.

Electrical Readymade Projects IEEE for BTech/MTech in wanaparthy

Readymade Electrical Projects IEEE for BTech/MTech in wanaparthy.

Software Used: Matlab/Simulink
Areas : Power Electronics and Drives, Power Systems, Renewable Energy and sources, etc
Download
Contact us:
email: asokatechnologies@gmail.com
website: www.asokatechnologies.in
Asoka technologies provide Readymade Electrical Projects IEEE for BTech/MTech  in wanaparthy.

POWER ELECTRONICS is the utilization of strong state gadgets to the control and transformation of electric power. The principal high power electronic gadgets were mercury-bend valves. In current frameworks the transformation is performed with semiconductor exchanging gadgets, for example, diodes, thyristors and transistors, spearheaded by R. D. Middlebrook and others starting in the 1950s. Rather than electronic frameworks worried about transmission and preparing of signs and information, in control hardware considerable measures of electrical vitality are handled. An AC/DC converter (rectifier) is the most run of the mill control gadgets gadget found in numerous customer electronic gadgets, e.g. TVs, PCs, battery chargers, and so forth. The power extend is normally from many watts to a few hundred watts. In industry a typical application is the variable speed drive (VSD) that is utilized to control an acceptance engine. The power scope of VSDs begin from a couple of hundred watts and end at many megawatts.

Readymade electrical projects in IEEE for b.tech and m.tech projects.ELECTRICAL ENGINEERING is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.Electrical engineering has now subdivided into a wide range of sub fields including electronics

Major Electrical Projects for BTech/MTech using Matlab/Simulink in warangal

Major Electrical Projects for BTech/MTech using Matlab/Simulink in warangal. 
Software Used: Matlab/Simulink
Areas : Power Electronics and Drives, Power Systems, Renewable Energy and sources, etc
Download
Contact us:
email: asokatechnologies@gmail.com
website: www.asokatechnologies.in
Asoka technologies provide Latest Electrical projects for BTech/MTech using Matlab/Simulink in warangal.
ELECTRICAL ENGINEERING is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.
Electrical engineering has now subdivided into a wide range of sub fields including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.

Latest Electrical projects for BTech/MTech using Matlab/Simulink in nizamabad

Latest Electrical projects for BTech/MTech using Matlab/Simulink in nizamabad. 
Software Used: Matlab/Simulink
Areas : Power Electronics and Drives, Power Systems, Renewable Energy and sources, etc
Download
Contact us:
email: asokatechnologies@gmail.com
website: www.asokatechnologies.in
Asoka technologies provide Latest Electrical projects for BTech/MTech using Matlab/Simulink in nizamabad.
ELECTRICAL ENGINEERING is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.
Electrical engineering has now subdivided into a wide range of sub fields including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.

m.tech eee in ieee electrical projects in nagar kurnool

m.tech eee in ieee electrical projects in nagar kurnool. 
Software Used: Matlab/Simulink
Areas : Power Electronics and Drives, Power Systems, Renewable Energy and sources, etc
Download
Contact us:
email: asokatechnologies@gmail.com
website: www.asokatechnologies.in
Asoka technologies provide Academic Electrical Projects nagar kurnool.
ELECTRICAL ENGINEERING is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.
Electrical engineering has now subdivided into a wide range of sub fields including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.

electrical projects in final year eee in medak

electrical projects in final year eee in medak. 
Software Used: Matlab/Simulink
Areas : Power Electronics and Drives, Power Systems, Renewable Energy and sources, etc
Download
Contact us:
email: asokatechnologies@gmail.com
website: www.asokatechnologies.in
Asoka technologies provide  Electrical Projects in final year eee in medak.
ELECTRICAL PROJECTS IN ENGINEERING is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.
Electrical engineering has now subdivided into a wide range of sub fields including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.

electrical projects Engineers are always in search of projects, and finding meaningful projects makes that search worthwhile. Some electrical engineering project ideas for such engineers. A lot of them may deal in higher power than electronics engineers are used to, hence safety first.  These hand picked eee projects are simple as well as interesting.

Electrical projects in engineering on latest technologies along with our expert project guidance and tutorials that help in your research and studies. With these courses, you not only build electrical engineering projects but you will also learn while building it. These innovative EEE engineering projects have been researched and compiled into an online course to make it easy for you to learn and build the desired project for your final year presentation. These project based courses are designed to help you become more productive, increasing your chances of getting recruited in a core company or getting into any esteemed university for masters. The skills, in addition to your technical skills, can only be groomed by doing engineering projects practically. So start to learn and build EEE projects.

ELECTRICAL PROJECTS

Academic b.tech Electrical Projects in mahabubabad

Academic b.tech Electrical Projects in mahabubabad .

Software Used: Matlab/Simulink
Areas : Power Electronics and Drives, Power Systems, Renewable Energy and sources, etc
Download
Contact us:
email: asokatechnologies@gmail.com
website: www.asokatechnologies.in
Asoka technologies provide Academic Electrical Projects mahabubabad.
ACADEMIC B.TECH ELECTRICAL PROJECTS IN ENGINEERING is a field of engineering that generally deals with the study and application of electricity, electronics, and electro magnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broad casting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.
Electrical engineering has now subdivided into a wide range of sub fields including electronics, digital computers, power engineering, tele communications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these sub disciplines overlap and also overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electro magnetics & waves, microwave engineering, nanotechnology, electro chemistry, renewable energies, mechatronics, electrical materials science, and many more.

ACADEMIC B.TECH ELECTRICAL PROJECTS IN ENGINEERING Electrical engineering, one of the core courses of engineering discipline deals with the study of design, development, and maintenance of electrical systems and their components, ensuring quality, safety, reliability, and sustainability. The course focuses on the manufacturing of electrical equipment used in a number of sectors including construction and building and the production and distribution of power. Students pursuing electrical engineering study about semiconductors and microprocessors. The undergraduate course will award a B.Tech / B.E. degree and the postgraduate course, an M.Tech. Electrical engineering is rapidly growing not only within core areas such as wireless communications and mobile technologies but also in other cross-functioning areas including nanotechnology and biomedical engineering The world is moving towards the renewable source of energy including hydel, solar and wind power, and multi-national corporations are searching for power generation experts.

ACADEMIC B.TECH ELECTRICAL PROJECTS IN ENGINEERING

Nine-level Asymmetrical Single Phase Multilevel Inverter Topology with Low switching frequency and Reduce device counts

 

ABSTRACT:

This paper presents a new asymmetrical single phase multilevel inverter topology capable of producing nine level output voltage with reduce device counts. In order to obtain the desired output voltage, dc sources are connected in all the combination of addition and subtraction through different switches. Proposed topology results in reduction of dc source, switch counts, losses, cost and size of the inverter. Comparison between the existing topologies shows that the proposed topology yields less component counts. Proposed topology is modeled and simulated using Matlab-Simulink software in order to verify the performance and feasibility of the circuit. A low frequency switching strategy is also proposed in this work. The results show that the proposed topology is capable to produce a nine-level output voltage with less number of component counts and acceptable harmonic distortion content.

KEYWORDS:

  1. Multilevel inverter
  2. Asymmetrical
  3. Total Harmonic Distortion (THD)
  4. Low-frequency switching

 SOFTWARE: MATLAB/SIMULINK

CIRCUIT DIAGRAM:

Fig. 1. Proposed nine level inverter topology.

EXPECTED SIMULATION RESULTS:

 

  • (a) Output voltage waveform
  • (b) Voltage Output Harmonic spectrum
  • (c) Load current waveform
  • (d) Load Current Harmonic spectrum
  • Fig. 2. Simulation Output results at 50Hz fundamental frequency for R =150ohm, L= 240, P.F = 0.9

(a) Output voltage waveform

  • (b) Voltage Output Harmonic spectrum

  • (c) Load current waveform
  • (d) Load Current Harmonic spectrum
  • Fig. 3. Simulation Output results at 50Hz fundamental frequency for R = 150ohm, L= 240, P.F = 0.9

CONCLUSION:

In this paper a new single-phase multilevel inverter topology is presented. Proposed topology is capable of producing nine-level output voltage with reduce device counts. It can be used in medium and high power application with unequal dc sources. Different modes of operation are discussed in detail. On the bases of device counts, the proposed topology is compared with conventional as well as other asymmetrical nine-level inverter topologies presented in literature. Comparative study shows that, for nine level output, the proposed topology requires lesser component counts then the conventional and other topologies. Proposed circuit is modeled in Matlab/Simulink environment. Results obtained shows that topology works properly. Detailed Simulation analysis is carried out. THD obtained in the output voltage is 8.95% whereas the each harmonic order is < 5%, satisfies harmonic Standard (IEEE-519).

 REFERENCES:

[1] J. Rodriguez, L. G. Franquelo, S. Kouro, J. I. Leon, R. C. Portillo, M. A. M. Prats and M. A. Perez, “Multilevel Converters: An Enabling Technology for High-Power Applications”, IEEE Proceeding, Vol 97, No. 11, pp.1786 – 1817, November 2009.

[2] J. R. Espinoza, “Inverter”, Power Electronics Handbook, M. H. Rashid, Ed. New York, NY, USA: Elsevier, 2001,pp. 225 -269.

[3] L. M. Tolbert and T. G. Habetler, “Novel multilevel inverter carrier based PWM method”, IEEE Transactions on Indsutrial Apllications”, Vol. 35, No. 5, pp. 1098-1107, September 1999.

[4] S. Debnath, J. Qin, B. Bahrani, M. Saeedifard and P. Barbosa, “Operation, Control and Applications of the Modular Multilevel Converter: A Review”, IEEE Transactions on Power Electronics, Vol. 30, No. 1, pp. 37-53, January 2015.

[5] L. G. Franquelo, J. Rodriguez, J. I. Leon, S. Kouro, R. C. Portillo and M. A. M. Prats, “The Age of Multilevel Converters Arrives”, IEEE Industrial Electronics magazine, Vol. 2, No. 2 pp. 28-39, June 2008.