A Novel Seven-Level Active Neutral Point Clamped Converter with Reduced Active Switching Devices and DC-link Voltage

ABSTRACT:

This paper presents a novel seven-level inverter topology for medium-voltage high-power applications. It consists of eight active switches and two inner flying-capacitor units forming a similar structure as in a conventional Active Neutral Point Clamped (ANPC) inverter. This unique arrangement reduces the number of active and passive components. A simple modulation technique reduces cost and complexity in the control system design without compromising reactive power capability. In addition, compared to major conventional 7-level inverter topologies such as the Neutral Point Clamped (NPC), Flying Capacitor (FC), Cascaded H-bridge (CHB) and Active NPC (ANPC) topologies, the new topology reduces the dc-link voltage requirement by 50%. This recued dc-link voltage makes the new topology appealing for various industrial applications. Experimental results from a 2.2 kVA prototype are presented to support the theoretical analysis presented in this paper. The prototype demonstrates a conversion efficiency of around 97.2% ± 1% for a wide load range.

KEYWORDS:

  1. Multilevel Inverter
  2. 7-level inverter
  3. Active Neutral Point Clamped (ANPC) inverter
  4. Flying Capacitor
  5. Voltage Source Converter

SOFTWARE: MATLAB/SIMULINK

CONCLUSION:

In this paper, a novel eight-switch seven-level Active Neutral Point Clamped inverter is proposed. Modulation techniques are explored and operation under both active and reactive power factor conditions are systematically analyzed. A comparative analysis and a set of design guidelines are presented and followed by simulation and experimental verification. Compared to conventional seven-level inverter topologies, the ANPC inverter topology requires only eight power devices for a single-phase design and halves the dc-link voltage required to produce a given ac voltage output magnitude when compared to similar circuits. For applications such as for a grid-connected PV system, this may help eliminate additional power conversion stages (boost converters) and therefore increase the efficiency and reliability of the system. Further, this reduces the voltage stress on the dc-link capacitor, which reduces the cost and size of the system design. The inverter can operate at any power factor (leading or lagging) without requiring any changes to the modulation scheme. Compared with other seven-level configurations, the performance demonstrated by the new inverter is highly competitive, potentially making it an appropriate topology choice for a wide-range of power conversion applications, e.g. variable-speed drives, electric vehicles (V2G/G2V technologies), grid-connected renewable energy systems.

REFERENCES:

[1] M. Schweizer, T. Friedli, and J. W. Kolar, “Comparative Evaluation of Advanced Three-Phase Three-Level Inverter/Converter Topologies Against Two-Level Systems,” IEEE Trans. Ind. Electron., vol. 60, no. 12, pp. 5515-5527, Dec. 2012.

[2] H. Tian, Y. Li, Y. W. Li, “A Novel Seven-Level Hybrid-Clamped (HC) Topology for Medium Voltage Motor Drives,” IEEE Trans. Power Electron., vol. 33, no. 7, pp. 5543-5547, Jul. 2018.

[3] S. Kouro, M. Malinowski, K. Gopakumar, J. Pou, L. G. Franquelo, B. Wu, J. Rodriguez, M. A. Perez, and J. I. Leon, “Recent Advances and Industrial Applications of Multilevel Converters,” IEEE Trans. Ind. Electron., vol. 57, no. 8, pp. 2553-2580, Aug. 2010.

[4] J. Rodríguez, J. S. Lai, and F. Z. Peng, “Multilevel Inverters: A Survey of Topologies, Controls, and Applications,” IEEE Trans. Ind. Electron., vol. 49, no. 4, pp. 724-738, Aug. 2002.

[5] J. I. Leon, S. Vazquez, and L. G. Franquelo, “Multilevel Converters: Control and Modulation Techniques for their Operation and Industrial Applications,” Proc. of the IEEE, vol. 105, no. 11, pp. 2066-2081, Nov. 2017.

 

A Seven-Switch Five-Level Active-Neutral-Point-Clamped Converter and Its Optimal Modulation Strategy

ABSTRACT:

Multilevel inverters are receiving more attentions nowadays as one of preferred solutions for medium and high power applications. As one of the most popular hybrid multilevel inverter topologies, the Five-Level Active-Neutral-Point-Clamped inverter (5L-ANPC) combines the features of the conventional Flying-Capacitor (FC) type and Neutral-Point-Clamped (NPC) type inverter and was commercially used for industrial applications. In order to further decrease the number of active switches, this paper proposes a Seven-Switch 5L-ANPC (7S-5L-ANPC) topology, which employs only seven active switches and two discrete diodes. The analysis has shown a lower current rating can be selected for the seventh switch under high power factor condition, which is verified by simulation results. The modulation strategy for 7S-5L-ANPC inverter is discussed. A 1KVA single-phase experimental prototype is built to verify the validity and flexibility of the proposed topology and modulation method.

KEYWORDS:

  1. Multilevel inverter
  2. Active-Neutral-Point-Clamped (ANPC) inverter
  3. Flying-Capacitor
  4. Pulse-Width-Modulation (PWM)

 SOFTWARE: MATLAB/SIMULINK

 CIRCUIT DIAGRAM:

 

Fig.1 (a) Proposed topology.

 EXPECTED SIMULATION RESULTS

 

 Fig. 2. Simulation results under unity power factor condition. (a) Output voltage and FC voltage. (b) T7 current in case 1. (c) T7 current in case 2. (d) T7 current in case 3. (e) T7 current in case 4.

Fig. 3. Simulation results under reactive power condition (PF = 0.9, capacitive). (a) Output voltage and FC voltage. (b) T7 current in case 1. (c) T7 current in case 2. (d) T7 current in case 3. (e) T7 current in case 4

Fig. 4. Simulation results under reactive power condition (PF = 0). (a) Output voltage and FC voltage. (b) T7 current in case 1. (c) T7 current in case 2. (d) T7 current in case 3. (e) T7 current in case 4.

Fig. 5. Experimental results under unity power factor condition: waveforms of inverter output voltage, grid voltage, FC voltage and output current.

CONCLUSION:

In this paper, a novel 7S-5L-ANPC inverter topology has been proposed. As compared with the conventional 5L-ANPC inverter, it requires seven active switches for single phase and a low current rating switch can be selected for the seventh switch under high power factor situation. The operating principles and switching states are presented. The detailed comparison between the proposed topology and the conventional 5L-ANPC topologies in terms of voltage stress and efficiency is made. The specific modulation strategy of 7S-5L-ANPC inverter under reactive power operation has been proposed. Computer simulation and experimental prototype based on a single phase 1KVA prototype have been carried out in unity power factor condition and reactive power condition. The validity and advantages of the proposed topology and modulation method are demonstrated.

REFERENCES:

[1] S. Kouro, M. Malinowski, K. Gopakumar, J. Pou, L. G. Franquelo, B. W. Bin Wu, J. Rodriguez, M. a. Pérez, and J. I. Leon, “Recent advances and industrial applications of multilevel converters,” IEEE Trans. Ind. Electron., vol. 57, no. 8, pp. 2553–2580, Aug. 2010.

[2] F. Z. Peng, W. Qian, and D. Cao, “Recent advances in multilevel converter / inverter topologies and applications,” in Proc. IPEC, 2010, pp. 492–501.

[3] F. Z. Peng, “A generalized multilevel inverter topology with self voltage balancing,” IEEE Trans. Ind. Electron., vol. 37, no. 2, pp. 611–618, Feb. 2001.

[4] J. Rodriguez, Jih-Sheng Lai, and Fang Zheng Peng, “Multilevel inverters: a survey of topologies, controls, and applications,” IEEE Trans. Ind. Electron., vol. 49, no. 4, pp. 724–738, Apr. 2002.

[5] L. M. Tolbert, “A Multilevel Modular Capacitor Clamped DC-DC Converter,” in Proc. 41st IAS, 2006, pp. 966–973.