Analysis and Design of Three-Level, 24-Pulse Double Bridge Voltage Source Converter Based HVDC System for Active and Reactive Power Control

ABSTRACT

This paper manages the investigation, plan and control of a three-level 24-beat Voltage Source Converter (VSC) based High Voltage Direct Current (HVDC) framework. A three dimension VSC working at essential recurrence exchanging (FFS) is proposed with 24-heartbeat VSC structure to enhance the power quality and decrease the converter exchanging misfortunes for high influence applications. The structure of three-level VSC converter and framework parameters, for example, air conditioning inductor and dc capacitor is displayed for the proposed VSC based HVDC framework. It comprises of two converter stations encouraged from two diverse air conditioning frameworks. The dynamic power is exchanged between the stations in any case. The receptive power is autonomously controlled in every converter station. The three-level VSC is worked at advanced dead edge (β). A planned control calculation for both the rectifier and an inverter stations for bidirectional dynamic power stream is created dependent on FFS and neighborhood responsive power age. This outcomes in a significant decrease in exchanging misfortunes and maintaining a strategic distance from the responsive influence plant. Recreation is conveyed to confirm the execution of the proposed control calculation of the VSC based HVDC framework for bidirectional dynamic power stream and their autonomous receptive power control.

 BLOCK DIAGRAM:

image001

Fig. 1 Three-level 24-pulse double bridge VSC based HVDC system

 

EXPECTED SIMULATION RESULTS:

image002

Fig. 2a Performance of rectifier station during reactive power control of three level 24-pulse VSC HVDC system

image003

Fig. 2b Performance of Inverter station during reactive power control at rectifier station of three-level 24 pulse VSC HVDC system

image004

Fig. 2c Variation of (δ) and (α) values for rectifier and inverter Stations for reactive power variation of a three-level 24-pulse VSC HVDC system

image005

Fig. 3a Rectifier station during active power reversal of three-level 24-pulse VSC HVDC system

image006

Fig. 3b Inverter station during active power reversal of three-level 24-pulse VSC HVDC system

image007

Fig. 3c Variation of (δ) and (α) values during active power reversal of three level 24-pulse VSC HVDC system.

 CONCLUSION

Another three-level, 24-beat voltage source converter based HVDC framework working at essential recurrence exchanging has been planned and its model has been produced and it is effectively tried for the autonomous control of dynamic and receptive forces and satisfactory dimension consonant prerequisites. The responsive power has been controlled free of the dynamic power at the two conditions. The converter has been effectively worked in each of the four quadrants of dynamic and responsive forces with the proposed control. The inversion of the dynamic power stream has been actualized by switching the course of dc current without changing the extremity of dc voltage which is exceptionally troublesome in traditional HVDC frameworks. The power nature of the HVDC framework has additionally enhanced with three-level 24-beat converter task. The symphonious execution of this three-level, 24-beat VSC has been seen to an identical to two-level 48-beat voltage source converter.