Single- and Two-Stage Inverter-Based Grid Connected Photovoltaic Power Plants With Ride-Through Capability Under Grid Faults

IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 6, NO. 3, JULY 2015

 ABSTRACT Grid-connected distributed generation sources interfaced with voltage source inverters (VSIs) need to be disconnected from the grid under: 1) excessive dc-link voltage; 2) excessive ac currents; and 3) loss of grid-voltage synchronization. In this paper, the control of single and two stage grid-connected VSIs in photovoltaic (PV) power plants is developed to address the issue of inverter disconnecting under various grid faults. Inverter control incorporates reactive power support in the case of voltage sags based on the grid codes’ (GCs) requirements to ride-through the faults and support the grid voltages. A case study of a 1-MW system simulated in MATLAB/Simulink software is used to illustrate the proposed control. Problems that may occur during grid faults along with associated remedies are discussed. The results presented illustrate the capability of the system to ride-through different types of grid faults.

 

KEYWORDS:

  1. DC–DC converter
  2. Fault-ride-through
  3. Photovoltaic (PV) systems
  4. Power system faults
  5. Reactive power support
  6. single and two stage inverter

 

SOFTWARE: MATLAB/SIMULINK

 

BLOCK DIAGRAM:

single and two stage inverter

Fig. 1. Diagram of a single-stage GCPPP

 single and two stage inverter

Fig. 2. Diagram of the two-stage conversion-based GCPPP

 

EXPECTED SIMULATION RESULTS:

Fig. 3. Short-circuiting the PV panels: (a) grid voltages; (b) grid currents; and (c) dc-link voltage when applying a 60% SLG voltage sag at MV side of the transformer.

Fig. 4. Short-circuiting the PV panels: (a) overall generated power; (b) injected active power; and (c) reactive power to the grid.

Fig. 5. Turning the dc–dc converter switch ON: (a) grid voltages; (b) grid currents; and (c) dc-link voltage when applying a 60% SLG voltage sag at the MV side.

Fig. 6. Control of the dc–dc converter to produce less power under voltage sag: (a) grid voltages; (b) grid currents; (c) dc-link voltage; (d) input voltage of the dc–dc converter; (e) estimated duty cycle; and (f) actual duty cycle under a 3LG with 45% voltage sag at MV side.

Fig. 7. Control of the dc–dc converter to produce less power under voltage sag: (a) grid voltages under a 3LG with 45% voltage sag at MV side; (b) related grid currents for G = 300 W/m2; and (c) related dc-link voltage; (d) grid voltages under an SLG with 65% voltage sag at theMV side; (e) related grid currents for G = 1000 W/m2; (f) related dc-link voltage; (g) related grid currents under G = 300 W/m2; and (h) related dc-link voltage.”

single and two stage inverter

CONCLUSION

Performance requirements of GCPPPs under fault conditions for single and two stage grid-connected inverters have been addressed in this paper. Some modifications have been proposed for controllers to make the GCPPP ride-through compatible to any type of faults according to the GCs. These modifications include applying current limiters and controlling the dc-link voltage by different methods. It is concluded that for the single-stage configuration, the dc-link voltage is naturally limited and therefore, the GCPPP is self-protected, whereas in the two-stage configuration it is not. Three methods have been proposed for the two-stage configuration to make the GCPPP able to withstand any type of faults according to the GCs without being disconnected. The first two methods are based on not generating any power from the PV arrays during the voltage sags, whereas the third method changes the power point of the PV arrays to inject less power into the grid compared with the prefault condition. The validity of all the proposed methods to ride-through voltage sags has been demonstrated by multiple case studies performed by simulations.

 

REFERENCES

  1. Trilla et al., “Modeling and validation of DFIG 3-MW wind turbine using field test data of balanced and unbalanced voltage sags,” IEEE Trans. Sustain. Energy, vol. 2, no. 4, pp. 509–519, Oct. 2011.
  2. Popat, B. Wu, and N. Zargari, “Fault ride-through capability of cascaded current-source converter-based offshore wind farm,” IEEE Trans. Sustain. Energy, vol. 4, no. 2, pp. 314–323, Apr. 2013.
  3. Marinopoulos et al., “Grid integration aspects of large solar PV installations: LVRT capability and reactive power/voltage support requirements,” in Proc. IEEE Trondheim Power Tech, Jun. 2011, pp. 1–8.
  4. Islam, A. Al-Durra, S. M. Muyeen, and J. Tamura, “Low voltage ride through capability enhancement of grid connected large scale photovoltaic system,” in Proc. 37th Annu. Conf. IEEE Ind. Electron. Soc. (IECON), Nov. 2011, pp. 884–889.

Leave a Reply

Your email address will not be published. Required fields are marked *