PMSG Based Wind Energy Generation System:Energy Maximization and its Control

ABSTRACT:

This paper deals with the energy maximization and control analysis for the permanent magnet synchronous generator (PMSG) based wind energy generation system (WEGS). The system consists of a wind turbine, a three-phase IGBT based rectifier on the generator side and a three-phase IGBT based inverter on the grid side converter system. The pitch angle control by perturbation and observation (P&O) algorithm for obtaining maximum power point tracking (MPPT). MPPT is most effective under, cold weather, cloudy or hazy days. A designed control technique is proposed for the MPPT mechanism of the system. This paper will explore in detail about the control analysis for both the generator and grid side converter system. Further, it will also discuss about the pitch angle control for the wind turbine in order to obtain maximum power for the complete wind energy generation system. The proposed WEGS for maximization of power is modelled, designed and simulated using MATLAB R2014b Simulink with its power system toolbox and discrete step solver incorporated in the simulation tool.

KEYWORDS:

  1. Maximum power point tracking (MPPT)
  2. Permanent magnet synchronous generator (PMSG)
  3. Pitch angle control (PAC)
  4. Wind energy generation system (WEG)

 SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:

Fig. 1. Control issue in PMSG based wind turbine system

EXPECTED SIMULATION RESULTS:

 

Fig.2. Wind speed (15 m/s).

Fig.3. Pitch angle ( 26 Degree).

Fig.4. Active power output (1.49 MW).

Fig.5. Stator voltage of PMSG (per unit).

Fig.6. Stator current of PMSG (per unit).

Fig.7. Wind speed (m/s).

Fig.8. Pitch control.

Fig.9. Electrical torque of PMSG.

Fig.10. Wind turbine power with pitch control.

 CONCLUSION:

This paper has briefly discussed about the energy maximization and control analysis for the PMSG based wind energy generation system. The paper also explored in detail about the different control algorithm for both the machine and grid side converter system and has used VSC control for our proposed mechanism. A brief discussion on the pitch angle control for the wind turbine has been described which aims to obtain maximum power for the complete wind energy generation system. A designed control technique named as (P&O) has also been proposed for the MPPT mechanism of the system whose results has been validated using MATLAB R2014b Simulink. As discussed before the presented technique includes maximum power point tracking module, pitch angle control and average model for machine side and grid side converters. Also, the integrated control system controls the generator speed, DC-link voltage and active power along with the above-mentioned factors.

REFERENCES:

[1] M. Benadja and A. Chandra, “A new MPPT algorithm for PMSG based grid connected wind energy system with power quality improvement features”, IEEE Fifth Power India Conference, Murthal, pp. 1-6, 2012.

[2] S. Sharma and B. Singh, “An autonomous wind energy conversion system with permanent magnet synchronous generator”, International Conference on Energy, Automation and Signal, Bhubaneswar, Odisha, pp. 1-6, 2011.

[3] M. Singh and A. Chandra, “Power maximization and voltage sag/swell ride-through capability of PMSG based variable speed wind energy conversion system”,34th Annual Conference of IEEE Industrial Electronics, Orlando, FL, pp. 2206-2211, 2008.

[4] T. Tafticht, K. Agbossou, A. Cheriti and M. L. Doumbia, “Output Power Maximization of a Permanent Magnet Synchronous Generator Based Stand-alone Wind Turbine”,IEEE International Symposium on Industrial Electronics, Montreal, pp. 2412-2416, 2006.

[5] N. A. Orlando, M. Liserre, R. A. Mastromauro and A. D. Aquila, “A Survey of Control Issues in PMSG-Based Small Wind-Turbine Systems”, IEEE Transactions on Industrial Informatics, vol. 9, no. 3, pp. 1211-1221, Aug. 2013.

Leave a Reply

Your email address will not be published. Required fields are marked *