Modeling and Simulation of Hybrid Wind Solar Energy System using MPPT

ABSTRACT:

The main objective of this paper is to enhance the power transfer capability of grid interfaced hybrid generation system. Generally, this hybrid system is a combination of solar and wind energy systems. In order to get maximum and constant output power from these renewable energy systems at any instant of time, this paper proposes the concept of maximum power tracking techniques. The main concept of this maximum power point tracking controller is used for controlling the Direct Current (DC) to DC boost converter. Finally, the performance of this Maximum Power Point Tracking (MPPT) based Hybrid system is observed by simulating using Matlab/Simulink.

KEYWORDS: MPPT Technique, Solar Energy System, Wind Turbine System

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:

image001

Figure 1. Configuration of Hybrid Energy System.

EXPECTED SIMULATION RESULTS:

 image002

Figure 2. Simulation Diagram for Hybrid Wind-PV System.

image003

Figure 3. Output Load Voltage.

image004

Figure 4. Output Load Current.

image005

Figure 5. Powers: Line, Wind, Solar.

image006

Figure 6. Output Voltage from Wind System.

image007

Figure 7. Output Voltage from Wind System.

 CONCLUSION:

Output from solar and a wind system is converted into AC power output by using inverter. In the given time additional load of 5 KW is connected by using Circuit Breaker. Under all operating conditions to meet the load the hybrid system is controlled to give maximum output power. Battery is supporting to wind or solar system to meet the load and Also, simultaneous operation for the same load.

REFERENCES:

  1. Huil J, Bakhshai A, Jain PK. A hybrid wind-solar energy system: A new rectifier stage topology. 2010 25th Annual IEEE Proceedings of Applied Power Electronics Conference and Exposition (APEC); 2010 Feb 21–25. p. 156–61.
  2. Kim SK, Jeon JH, Cho CH, Ahn JB, Kwon SH. Dynamic modeling and control of a grid-connected hybrid genera­tion system with versatile power transfer. IEEE Transactions on Industrial Electronics. 2008 Apr; 55(4):1677–88.
  3. Ezhilarasan S, Palanivel P, Sambath S. Design and devel­opment of energy management system for DG source allocation in a micro grid with energy storage system. Indian Journal of Science and Technology. 2015 Jun; 8(13):58252.
  4. Patel MR. Wind and solar power systems design analysis and operation. 2nd ed. Taylor and Francis Group Publishing Co. 2006; 30(3):265–6.
  5. Chen YM, Liu YC, Hung SC, Cheng CS. Multi-input inverter for grid-connected hybrid PV/wind power system. IEEE Transactions on Power Electronics. 2007 May; 22(3):1070–7.

 

Digital Simulation of the Generalized Unified Power Flow Controller System with 60-Pulse GTO-Based Voltage Source Converter

 

ABSTRACT:

The Generalized Unified Power Flow Controller (GUPFC) is a Voltage Source Converter (VSC) based Flexible AC Transmission System (FACTS) controller for shunt and series compensation among the multiline transmission systems of a substation. The paper proposes a full model comprising of 60-pulse Gate Turn-Off thyristor VSC that is constructed becomes the GUPFC in digital simulation system and investigates the dynamic operation of control scheme for shunt and two series VSC for active and reactive power compensation and voltage stabilization of the electric grid network. The complete digital simulation of the shunt VSC operating as a Static Synchronous Compensator (STATCOM) controlling voltage at bus and two series VSC operating as a Static Synchronous Series Capacitor (SSSC) controlling injected voltage, while keeping injected voltage in quadrature with current within the power system is performed in the MATLAB/Simulink environment using the Power System Block set (PSB). The GUPFC, control system scheme and the electric grid network are modeled by specific electric blocks from the power system block set. The controllers for the shunt VSC and two series VSCs are presented in this paper based on the decoupled current control strategy. The performance of GUPFC scheme connected to the 500-kV grid is evaluated. The proposed GUPFC controller scheme is fully validated by digital simulation.

KEYWORDS:

60-Pulse GTO Thyristor Model VSC, UPFC, GUPFC,Active and Reactive Compensation, Voltage Stability

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:

UPFC with 60-Pulse GTO-Based Voltage Source Converter

Figure 1. Three-bus system with the GUPFC at bus B5 and B2

EXPECTED SIMULATION RESULTS:

2

 Figure 2. Sixty-pulse VSC output voltage

3

Figure 3. Simulated results of the GUPFC .shunt converter operation for DC voltage with Qref = 0.3pu; 0.5 pu

4

Figure 4. Simulated results of the GUPFC series converter operation Pref=8.7pu; 10pu, Qref=-0.6pu; 0.7pu

5

Figure 5. Simulated results of the GUPFC series converter operation Pref=7.7pu; 9.0pu, Qref=-0.5pu; 0.9pu

6

Figure 6. Digital simulation results for the decoupled current controller schemes for the shunt VSC in a weak power system

 CONCLUSION:

The paper presents and proposes a novel full 60-pulse GTO voltage source converter that it constructed becomes GUPFC FACTS devices. It comprises the full 60-pulse VSC-cascade models connected to the grid network through the coupling transformer. These full descriptive digital models are validated for voltage stabilization, active and reactive compensation and dynamically power flow control using three decoupled current control strategies. The control strategies implement decoupled current control switching technique to ensure accountability, minimum oscillatory behavior, minimum inherent phase locked loop time delay as well as system instability reduced impact due to a weak interconnected ac system and ensures full dynamic regulation of the bus voltage (VB), the series voltage injected and the dc link voltage Vdc. The 60-pulse VSC generates less harmonic distortion and reduces power quality problems in comparison to other converters such as (6,12,24 and 36) pulse. In the synchronous reference frame, a complete model of a GUPFC has been presented and control circuits for the shunt and two series converters have been described. The simulated results presented confirm that the performance of the proposed GUPFC is satisfactory for active and reactive power flow control and independent shunt reactive compensation.

 REFERENCES:

[1] K. K. Sen, “SSSC-static synchronous series compensator. Theory, modeling and application”, IEEE Transactions on Power Delivery, Vol. 13, No. 1, pp. 241-246, January 1998.

[2] B. Fardanesh, B. Shperling, E. Uzunovic, and S. Zelingher, “Multi-Converter FACTS Devices: The Generalized Unified Power Flow Controller (GUPFC),” in IEEE 2000 PES Summer Meeting, Seattle, USA, July 2000.

[3] N. G. Hingorani and L. Gyugyi, “Understanding FACTS, Concepts and Technology of Flexible AC Transmission Systems. Pscataway, NJ: IEEE Press. 2000.

[4] X. P. Zang, “Advanced Modeling of the Multicontrol Func-tional Static Synchronous Series Compensator (SSSC) in Newton Power Flow” , IEEE Transactions on Power Systems, Vol. 20, No. 4, pp. 1410-1416, November 2005,

[5] A. H. Norouzi and A. M. Sharaf, Two Control Schemes to Enhance the Dynamic Performance of the Statcom and Sssc”, IEEE Transactions on Power Delivery, Vol. 20, No. 1, pp. 435-442, January 2005.

 

 

A Two-Level, 48-Pulse Voltage Source Converter for HVDC Systems

ABSTRACT

This paper deals with an analysis, modeling and control of a two level 48-pulse voltage source converter for High Voltage DC (HVDC) system. A set of two-level 6-pulse voltage source converters (VSCs) is used to form a 48-pulse converter operated at fundamental frequency switching (FFS). The performance of the VSC system is improved in terms of reduced harmonics level at FFS and THD (Total Harmonic Distribution) of voltage and current is achieved within the IEEE 519 standard. The performance of the VSC is studied in terms of required reactive power compensation, improved power factor and reduced harmonics distortion. Simulation results are presented for the designed two level multipulse converter to demonstrate its capability. The control algorithm is disused in detail for operating the converter at fundamental frequency switching.

 KEYWORDS

Two-Level Voltage Source Converter

HVDC Systems

Multipulse

Fundamental Frequency Switching

Harmonics.

 SOFTWARE: MATLAB/SIMULINK

 BLOCK DIAGRAM:

1

Fig. 1 A 48-Pulse voltage source converter based HVDC system configuration

 EXPECTED SIMULATION RESULTS:

2

Fig. 2 Steady state performance of proposed 48-pulse voltage source converter

3 4

Fig. 3 Dynamic performance of proposed 48-pulse voltage source converter

 5 6

 Fig. 4 Waveforms and harmonic spectra of 48-pulse converter (a) supply voltage (b) supply current (c) converter voltage

 CONCLUSION

A 48-pulse two-level voltage source converter has been designed, modeled and controlled for back-to-back HVDC system. The transformer connections with appropriate phase shift have been used to realize a 48-pulse converter along with a control scheme using a set of two level six pulse converters. The operation of the designed converter configuration has been simulated and tested in steady sate and transient conditions which have demonstrated the quite satisfactory converter operation. The characteristic harmonics of the system has also improved by the proposed converter configuration.

 REFERENCES

[1] J. Arrillaga, Y. H. Liu and N. R. Waston, “Flexible Power Transmission, The HVDC Options,” John Wiley & Sons, Ltd, Chichester, UK, 2007.

[2] Gunnar Asplund Kjell Eriksson and kjell Svensson, “DC Transmission based on Voltage Source Converter,” in Proc. of CIGRE SC14 Colloquium in South Africa 1997, pp.1-8.

[3] Y. H. Liu R. H. Zhang, J. Arrillaga and N. R. Watson, “An Overview of Self-Commutating Converters and their Application in Transmission and Distribution,” in Conf. IEEE/PES Trans. and Distr.Conf. & Exhibition, Asia and Pacific Dalian, China 2005.

[4] B. R. Anderson, L. Xu, P. Horton and P. Cartwright, “Topology for VSC Transmission,” IEE Power Engineering Journal, vol.16, no.3, pp142- 150, June 2002.

[5] G. D. Breuer and R. L. Hauth, “HVDC’s Increasing Poppularity”, IEEE Potentials, pp.18-21, May 1988.

A Two-Level 24-Pulse Voltage Source Converter with Fundamental Frequency Switching for HVDC System

 ABSTRACT

This paper deals with the performance analysis of a two-level, 24-pulse Voltage Source Converters (VSCs) for High Voltage DC (HVDC) system for power quality improvement. A two level VSC is used to realize a 24-pulse converter with minimum switching loss by operating it at fundamental frequency switching (FFS). The performance of this converter is studied on various issues such as steady state operation, dynamic behavior, reactive power compensation, power factor correction, and harmonics distortion. Simulation results are presented for a two level 24-pulse converter to demonstrate its capability.

 

KEYWORDS

  1. Two-Level Voltage Source Converter
  2. HVDC
  3. Multipulse
  4. Fundamental Frequency Switching
  5. Harmonics

 

SOFTWARE: MATLAB/SIMULINK

 BLOCK DIAGRAM:

 1

 Fig. 1 A 24-Pulse voltage source converter based HVDC system Configuration

EXPECTED SIMULATION RESULTS

 2

Fig. 2 Synthesis of Stepped AC voltage waveform of 24-pulse VSC.

 

3

Fig. 3 Steady state performance of proposed 24-pulse voltage source Converter

4

Fig. 4 Dynamic performance of proposed 24-pulse voltage source converter

 

5

Fig. 5 Waveforms and harmonic spectra of 24-pulse covnerter i) supply voltage ii) supply current (iii) converter voltage

CONCLUSION

A two level, 24-pulse voltage source converter has been designed and its performance has been validated for HVDC system to improve the power quality with fundamental frequency switching. Four identical transformers have been used for phase shift and to realize a 24-pulse converter along with control scheme using a two level voltage source converter topology. The steady state and dynamic performance of the designed converter configuration has been demonstrated the quite satisfactory operation and found suitable for HVDC system. The characteristic harmonics of the converter system has also improved by the proposed converter configuration with minimum switching losses without using extra filtering requirements compared to the conventional 12-pulse thyristor converter.

 REFERENCES

[1] J. Arrillaga, “High Voltage Direct Current Transmission,” 2nd Edition, IEE Power and Energy Series29, London, UK-1998.

[2] J. Arrilaga and M. Villablanca, “24-pulse HVDC conversion,” IEE Proceedings Part-C, vol. 138, no. 1, pp. 57–64, Jan. 1991..

[3] Lars Weimers, “HVDC Light: a New Technology for a better Environment,” IEEE Power Engineering Review, vol.18, no. 8, pp. 1920-1926, 1989.

[4] Vijay K. Sood, “HVDC and FACTS Controller, Applications of Static Converters in Power Systems”, Kluwar Academic Publishers, The Netherlands, 2004.

[5] Gunnar Asplund Kjell Eriksson and kjell Svensson, “DC Transmission based on Voltage Source Converters, in Proc. of CIGRE SC14 Colloquium in South Africa 1997.

A New Control Strategy for Active and Reactive Power Control of Three-Level VSC Based HVDC System

ABSTRACT

This paper presents a new control strategy for real and reactive power control of three-level multipulse voltage source converter based High Voltage DC (HVDC) transmission system operating at Fundamental Frequency Switching (FFS). A three-level voltage source converter replaces the conventional two-level VSC and it is designed for the real and reactive power control is all four quadrants operation. A new control method is developed for achieving the reactive power control by varying the pulse width and by keeping the dc link voltage constant. The steady state and dynamic performances of HVDC system interconnecting two different frequencies network are demonstrated for active and reactive powers control. Total numbers of transformers used in the system are reduced in comparison to two level VSCs. The performance of the HVDC system is also improved in terms of reduced harmonics level even at fundamental frequency switching.

 KEYWORDS 

  1. HVDC
  2. Voltage Source Converter
  3. Multilevel
  4. Multipulse
  5. Dead Angle (β)

 SOFTWARE:  MATLAB/SIMULINK

BLOCK DIAGRAM: 1

Fig. 1 A three-level 24-Pulse voltage source converter based HVDC system

 

CONTROL SCHEME

2

Fig. 2 Control scheme of three-level VSC based HVDC system using dynamic dead angle (β) Control

EXPECTED SIMULATION RESULTS

3

Fig. 3 Performance of rectifier station during simultaneous real and reactive power control of three-level 24-pulse VSC based HVDC system

4

Fig. 4 Performance of inverter station during simultaneous real and reactive power control of three-level 24-pulse VSC based HVDC system

5

Fig. 5 Variation of angles (δ) and (β) values of three-level 24-pulse VSC based HVDC system during simultaneous real and reactive power control

CONCLUSION

A new control method for three-level 24-pulse voltage source converter configuration has been designed for HVDC system. The performance of this 24-pulse VSC based HVDC system using the control method has been demonstrated in active power control in bidirectional, independent control of the reactive power and power quality improvement. A new dynamic dead angle (β) control has been introduced for three-level voltage source converter operating at fundamental frequency switching. In this control the HVDC system operation is successfully demonstrated and also an analysis of (β) value for various reactive power requirement and harmonic performance has been carried out in detail. Therefore, the selection of converter operation region is more flexible according to the requirement of the reactive power and power quality.

REFERENCES

[1] Gunnar Asplund, Kjell Eriksson and kjell Svensson, “DC Transmission based on Voltage Source Converters,” in Proc. Of CIGRE SC14 Colloquium in South Africa 1997, pp.1-7.

[2] “HVDC Light DC Transmission based on Voltage Source Converter,” ABB Review Manual 1998, pp. 4-9.

[3] Xiao Wang and Boon-Tech Ooi, “High Voltage Direct Current Transmission System Based on Voltage Source Converter,” in IEEEPESC’ 90 Record, vol.1, pp.325-332.

[4] Michael P. Bahrman, Jan G. Johansson and Bo A. Nilsson, “Voltage Source Converter Transmission Technologies-The Right Fit for the Applications,” in Proc. of IEEE-PES General Meeting, Toronto, Canada, July-2003, pp.1840-1847.

[5] Y. H. Liu R. H. Zhang, J. Arrillaga and N. R. Watson, “An Overview of Self-Commutating Converters and their Application in Transmission and Distribution,” in Conf. Proc of IEEE/PES T & DConf. & Exhibition, Asia and Pacific Dalian, China 2005, pp.1-7.

A Novel High StepUp DCDC Converter Based on Integrating Coupled Inductor and Switched-Capacitor Techniques for Renewable Energy Applications

ABSTRACT

In this paper, a novel high step-up dc/dc converter is presented for renewable energy applications. The suggested structure consists of a coupled inductor and two voltage multiplier cells, in order to obtain high step-up voltage gain. In addition, two capacitors are charged during the switch-off period, using the energy stored in the coupled inductor which increases the voltage transfer gain. The energy stored in the leakage inductance is recycled with the use of a passive clamp circuit. The voltage stress on the main power switch is also reduced in the proposed topology. Therefore, a main power switch with low resistance RDS(ON) can be used to reduce the conduction losses. The operation principle and the steady-state analyses are discussed thoroughly. To verify the performance of the presented converter, a 300-W laboratory prototype circuit is implemented. The results validate the theoretical analyses and the practicability of the presented high step-up converter.

 KEYWORDS:

Coupled inductor, DC/DC converters, High step-up, Switched capacitor.

 SOFTWARE: MATLAB/SIMULINK

 CIRCUIT DIAGRAM:

image017

Fig. 1. Circuit configuration of the presented high-step-up converter.

SIMULATION RESULTS:

 image018 image019 image020 image021 image022 image023 image024

Fig. 2. Simulation results under load 300 W.

 CONCLUSION

This paper presents a new high-step-up dc/dc converter for renewable energy applications. The suggested converter is suitable for DG systems based on renewable energy sources, which require high-step-up voltage transfer gain. The energy stored in the leakage inductance is recycled to improve the performance of the presented converter. Furthermore, voltage stress on the main power switch is reduced. Therefore, a switch with a low on-state resistance can be chosen. The steady-state operation of the converter has been analyzed in detail. Also, the boundary condition has been obtained. Finally, a hardware prototype is implemented which converts the 40-V input voltage into 400-V output voltage. The results prove the feasibility of the presented converter.

REFERENCES

[1] F.Nejabatkhah, S. Danyali, S. Hosseini, M. Sabahi, and S. Niapour, “Modeling and control of a new three-input DC–DC boost converter for hybrid PV/FC/battery power system,” IEEE Trans. Power Electron., vol. 27, no. 5, pp. 2309–2324, May 2012.

[2] R. J. Wai and K. H. Jheng, “High-efficiency single-input multiple-output DC–DC converter,” IEEE Trans. Power Electron., vol. 28, no. 2, pp. 886–898, Feb. 2013.

[3] Y. Zhao, X. Xiang, C. Li, Y. Gu, W. Li, and X. He, “Single-phase high step-up converter with improved multiplier cell suitable for half- bridgebased PV inverter system,” IEEE Trans. Power Electron., vol. 29, no. 6, pp. 2807–2816, Jun. 2014.

[4] J.H. Lee, T. J. Liang, and J. F. Chen, “Isolated coupled-inductor-integrated DC–DC converter with non-dissipative snubber for solar energy applications,” IEEE Trans. Ind. Electron., vol. 61, no. 7, pp. 3337–3348, Jul.2014.

[5] C.Olalla, C. Delineand, andD.Maksimovic, “Performance of mismatched PV systems withsubmodule integrated converters,” IEEE J. Photovoltaic, vol. 4, no. 1, pp. 396–404, Jan. 2014.

A Multi-Input Bridgeless Resonant AC-DC Converter for Electromagnetic Energy Harvesting

ABSTRACT

Flapping electromagnetic-reed generators are investigated to harvest wind energy, even at low cut-off wind speeds. Power electronic interfaces are intended to address ac-dc conversion and power conditioning for single- or multiple-channel systems. However, the generated voltage of each generator reed at low wind speed is usually below the threshold voltage of power electronic semiconductor devices, increasing the difficulty and inefficiency of rectification, particularly at relatively low output powers. This manuscript proposes a multi-input bridgeless resonant ac-dc converter to achieve ac-dc conversion, step up voltage and match optimal impedance for a multi-channel electromagnetic energy harvesting system. Alternating voltage of each generator is stepped up through the switching LC network and then rectified by a freewheeling diode. Its resonant operation enhances efficiency and enables miniaturization through high frequency switching. The optimal electrical impedance can be adjusted through resonance impedance matching and pulse-frequency-modulation (PFM) control. A 5-cm×3-cm, six-input standalone prototype is fabricated to address power conditioning for a six-channel BreezBee® wind panel.

 KEYWORDS:

AC-DC conversion, electromagnetic energy harvesting, multi-input converter, resonant converter, wind energy.

 SOFTWARE: MATLAB/SIMULINK

 BLOCK DIAGRAM:

image001

image002

Fig. 1. Multi-channel EMR generators and PEI system: (a) conventional PEI; and (b) proposed multi-input PEI.

CIRCUIT DIAGRAM:

image003

Fig. 2. Illustrative scheme of the proposed multi-input converter (v(i)emf: EMF of #i reed; r(i)EMR: coil resistance; L(i)EMR: self-inductance; i(i)EMR: reed terminal current; v(i)EMR: reed terminal voltage; C(i)r1= C(i)r2: resonant capacitors; Lr: resonant inductor; Q(i)r1, Q(i)r2: MOSFETs; Dr: output diode; Co: output capacitor).

EXPERIMENTAL RESULTS:

image004

  •                                                             (a)
  • image005                                                                    (b)

Fig. 3. Experimental waveforms of power amplifiers: fin = 20 Hz; X-axis: 10 ms/div; Y-axis: (a) vemf = 3 Vrms; Ch1 = output voltage (Vo), 2.5 V/div; Ch2 = terminal voltage (vEMR) of reed #1, 10 V/div; Ch3 = input current (iEMR) of six reeds, 50 mA/div; and (b) vemf = 0.5 Vrms; Ch1 = output voltage (Vo), 0.5 V/div; Ch2 = terminal voltage (vEMR) of reed #1, 5 V/div; Ch3 = sum of the input currents (iEMR) of six reeds, 10 mA/div.

 image006                                                         (a)

image007

  •                                                           (b)

Fig. 4. Experimental waveforms of power amplifiers with step change: X-axis: 40 ms/div; Y-axis: (a) vemf = from 1 Vrms to 2 Vrms; Ch1 = output voltage (Vo), 1 V/div; Ch2 = terminal voltage (vEMR) of reed #1, 5 V/div; Ch3 = input current (iEMR) of six reeds, 50 mA/div; and (b) fin = from 20 Hz to 50 Hz; Ch1 = output voltage (Vo), 0.5 V/div; Ch2 = terminal voltage (vEMR) of reed #1, 5 V/div; Ch3 = input current (iEMR) of six reeds, 50 mA/div.

image008

(a)

image009

  •                                                                 (b)

Fig. 5. Experimental waveforms of EMR generators: X-axis: (a) 20 ms/div; (b) 100 ms/div; Y-axis: (a) constant wind speed; (b) wind speed step change; Ch1 = terminal voltage (vEMR) of reed #2, 5 V/div; Ch2 = output voltage (Vo), 1 V/div; Ch3 = terminal voltage (vEMR) of reed #1, 10 V/div; Ch4 = input current (iEMR) of reed #1, 10 mA/div.

 CONCLUSION

This manuscript introduces a multi-input bridgeless resonant ac-dc converter suitable for efficient, low-voltage, low-power, ac-dc power conversion of multiple electromagnetic generators. The multi-input single-stage topology is capable of directly converting independent, low-amplitude, alternative voltages of EMR inductive generators to a stepped-up dc output voltage with relatively high efficiency. Low-frequency alternating voltages of EMR generators are first converted into a high-frequency alternating voltage through an LC network and then rectified into a dc output voltage through a soft-switched diode. Optimal electrical impedance matching is achieved through proper LC network design and PFM control to scavenge maximum power of EMR generators. In addition, high-frequency soft-switching increases the potential of size miniaturization without suffering from switching losses. The converter performance is verified through a 5cm×3cm standalone prototype, which converts ac voltages of six-channel generators into a dc output voltage. A maximum PEI conversion efficiency of 86.3% is measured at 27-mW ac-dc power conversion. The topological concept, presented in this manuscript, can be adapted for rectification of any inductive voltage sources or electromagnetic energy-harvesting device.

REFERENCES

[1] A. Khaligh, P. Zeng, and C. Zheng, “Kinetic energy harvesting using piezoelectric and electromagnetic technologies – state of the art,” IEEE Trans. on Industrial Electronics, vol. 57, no. 3, pp. 850-860, Mar. 2010.

[2] Altenera Technology Inc., accessible online at http://altenera.com/products/.

[3] H. Jung, S. Lee, and D. Jang, “Feasibility study on a new energy harvesting electromagnetic device using aerodynamic instability,” IEEE Trans. on Magnetics, vol. 45, no. 10, pp. 4376-4379, Oct. 2009.

[4] A. Bansal, D. A. Howey, and A. S. Holmes, “CM-scale air turbine and generator for energy harvesting from low-speed flows,” in Proc. Solid-State Sensors, Actuators and Microsystems Conf., Jun. 2009, pp. 529-532.

[5] D. Rancourt, A. Tabesh, and L. G. Fréchette, “Evaluation of centimeter-scale micro windmills: aerodynamics and electromagnetic power generation,” in Proc. PowerMEMS, 2007, pp. 93-96.

 

High-Efficiency MOSFET Transformerless Inverter for Non-isolated Microinverter Applications

ABSTRACT

State-of-the-art low-power-level metal–oxide–semiconductor field-effect transistor (MOSFET)-based transformerless photovoltaic (PV) inverters can achieve high efficiency by using latest super junction MOSFETs. However, these MOSFET-based inverter topologies suffer from one or more of these drawbacks: MOSFET failure risk from body diode reverse recovery, increased conduction losses due to more devices, or low magnetics utilization. By splitting the conventional MOSFET based phase leg with an optimized inductor, this paper proposes a novel MOSFET-based phase leg configuration to minimize these drawbacks. Based on the proposed phase leg configuration, a high efficiency single-phase MOSFET transformerless inverter is presented for the PV microinverter applications. The pulsewidth modulation (PWM) modulation and circuit operation principle are then described. The common-mode and differential-mode voltage model is then presented and analyzed for circuit design. Experimental results of a 250Whardware prototype are shown to demonstrate the merits of the proposed transformerless inverter on non-isolated two-stage PV microinverter application.

 KEYWORDS: Microinverter, MOSFET inverters, photovoltaic (PV) inverter, transformerless inverter.

 SOFTWARE: MATLAB/SIMULINK

 BLOCK DIAGRAM:

image001

Fig. 1. Two-stage nonisolated PV microinverter.

CIRCUIT DIAGRAM:

image002

Fig. 2. Proposed transformerless inverter topology with (a) separated magnetic and (b) integrated magnetics.

 EXPERIMENTAL RESULTS:

image003

Fig. 3. Output voltage and current waveforms.

image004

Fig. 4. PWM gate signals waveforms.

image005

Fig. 5. Inverter splitting inductor current waveform.

image006

Fig. 6. Waveforms of voltage between grid ground and DC ground (VEG ).

CONCLUSION

This paper proposes a MOSFET transformerless inverter with a novel MOSFET-based phase leg, which achieves:

1) high efficiency by using super junction MOSFETs and SiC diodes;

2) minimized risks from the MOSFET phase leg by splitting the MOSFET phase leg with optimized inductor and minimizing the di/dt from MOSFET body diode reverse recovery;

3) high magnetics utilization compared with previous high efficiency MOSFET transformerless inverters in [21], [22], [25], which only have 50% magnetics utilization.

The proposed transformerless inverter has no dead-time requirement, simple PWM modulation for implementation, and minimized high-frequency CMissue. A 250Whardware prototype has been designed, fabricated, and tested in two-stage nonisolated microinverter application. Experimental results demonstrate that the proposed MOSFET transformerless inverter achieves 99.01% peak efficiency at full load condition and 98.8% CEC efficiency and also achieves around 98% magnetic utilization. Due to the advantages of high efficiency, low CM voltage, and improved magnetic utilization, the proposed topology is attractive for two-stage nonisolated PV microinverter applications and transformerless string inverter applications.

 REFERENCES

[1] F. Blaabjerg, Z. Chen, and S. B. Kjaer, “Power electronics as efficient interface in dispersed power generation systems,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1184–1194, Sep. 2004.

[2] S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, “A review of singlephase grid-connected inverters for photovoltaic modules,” IEEE Trans. Ind. Appl., vol. 41, no. 5, p. 1292, Sep. 2005.

[3] Q. Li and P. Wolfs, “A review of the single phase photovoltaic module integrated converter topologies with three different dc link configurations,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1320–1333, May 2008.

[4] Y. Xue, L. Chang, S. B. Kjaer, J. Bordonau, and T. Shimizu, “Topologies of single-phase inverters for small distributed power generators: An overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305–1314, 2004.

[5] W. Yu, J. S. Lai, H. Qian, and C. Hutchens, “High-efficiency MOSFET inverter with H6-type configuration for photovoltaic non-isolated AC-module applications,” IEEE Trans. Power Electron., vol. 56, no. 4, pp. 1253–1260, Apr. 2011.

A High Step-Up DC to DC Converter Under Alternating Phase Shift Control for Fuel Cell Power System

ABSTRACT

This paper investigates a novel pulse width modulation (PWM) scheme for two-phase interleaved boost converter with voltage multiplier for fuel cell power system by combining alternating phase shift (APS) control and traditional interleaving PWM control. The APS control is used to reduce the voltage stress on switches in light load while the traditional interleaving control is used to keep better performance in heavy load. The boundary condition for swapping between APS and traditional interleaving PWM control is derived. Based on the aforementioned analysis, a full power range control combining APS and traditional interleaving control is proposed. Loss breakdown analysis is also given to explore the efficiency of the converter. Finally, it is verified by experimental results.

 KEYWORDS: Boost converter, Fuel cell, Interleaved, Loss breakdown, Voltage multiplier.

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:

image001

Fig. 1. Grid-connected power system based on fuel cell.

image002

Fig. 2. Main theoretical waveforms at boundary condition.

EXPERIMENTAL RESULTS:

 image003image004 image005 image006Fig.3 Experimental results at boundary condition with traditional interleaving control (L = 1158 μH, R = 2023 Ω, and D = 0.448). (a) CH1-S1 Driver Voltage, CH2 L1 Current, CH3-S1 Voltage Stress, CH4-Output Voltage, (b) CH1-S1 Driver Voltage, CH2 C1 Current, CH3-S1 Voltage Stress, CH4-OutputVoltage, (c) CH1-S1 DriverVoltage,CH2 D1 Current,CH3-S1 Voltage Stress, CH4-Output Voltage, (d) CH1-S1 Driver Voltage, CH2 DM1 Current, CH3-S1 Voltage Stress, CH4-Output Voltage.

image007

Fig. 4. Traditional interleaving control at nominal load (L = 1158 μH and R = 478 Ω).]

image008

Fig. 5. Traditional interleaving control in Zone A (L = 1158 μH and R = 1658 Ω).

CONCLUSION

The boundary condition is derived after stage analysis in this paper. The boundary condition classifies the operating states into two zones, i.e., Zone A and Zone B. The traditional interleaving control is used in Zone A while APS control is used in Zone B. And the swapping function is achieved by a logic unit. With the proposed control scheme, the converter can achieve low voltage stress on switches in all power range of the load, which is verified by experimental results.

 REFERENCES

[1] N. Sammes, Fuel Cell Technology: Reaching Towards Commercialization. London, U.K.: Springer-Verlag, 2006.

[2] G. Fontes, C. Turpin, S. Astier, and T. A. Meynard, “Interactions between fuel cells and power converters: Influence of current harmonics on a fuel cell stack,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 670–678, Mar. 2007.

[3] P. Thounthong, B. Davat, S. Rael, and P. Sethakul, “Fuel starvation,” IEEE Ind. Appl. Mag., vol. 15, no. 4, pp. 52–59, Jul./Aug. 2009.

[4] S.Wang,Y.Kenarangui, and B. Fahimi, “Impact of boost converter switching frequency on optimal operation of fuel cell systems,” in Proc. IEEE Vehicle Power Propulsion Conf., 2006, pp. 1–5.

[5] S. K. Mazumder, R. K. Burra, and K. Acharya, “A ripple-mitigating and energy-efficient fuel cell power-conditioning system,” IEEE Trans. Power Electron., vol. 22, no. 4, pp. 1437–1452, Jul. 2007.

A High Step-Up Converter with Voltage-Multiplier Modules for Sustainable Energy Applications

ABSTRACT

This paper proposes a novel isolated high step-up converter for sustainable energy applications. Through an adjustable voltage-multiplier module, the proposed converter achieves a high step-up gain without utilizing either a large duty ratio or a high turns ratio. The voltage-multiplier modules are composed of coupled inductors and switched capacitors. Due to the passive lossless clamped performance, leakage energy is recycled, which alleviates a large voltage spike across the main switches and improves efficiency. Thus, power switches with low levels of voltage stress can be adopted for reducing conduction losses. In addition, the isolated topology of the proposed converter satisfies electrical-isolation and safety regulations. The proposed converter also possesses continuous and smooth input current, which decreases the conduction losses, lengthens life time of the input source, and constrains conducted electromagnetic-interference problems. Finally, a prototype circuit with 40 V input voltage, 380 V output, and 500 W maximum output power is operated to verify its performance. The maximum efficiency is 94.71 % at 200 W, and the full-load efficiency is 90.67 % at 500 W.

 KEYWORDS

  1. High Step-Up
  2. Voltage-Multiplier Module
  3. Isolated Converter

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:

image001

Fig. 1. Block diagram of a typically sustainable energy system.

CIRCUIT DIAGRAM:

image002

Fig. 2. Proposed isolated high step-up converter for sustainable e
nergy applications.

EXPERIMENTAL RESULTS:

image003

(a) Measured waveforms of vDS1, vDS2, iLin and iLk

image004

(b) Measured waveforms of vDc, vDr and iDr

image005

(C)Measured waveforms of vDf1, vDf2, iDf1 and iDf2

image006

(d) Measured waveforms of vDo, iDo and Vo

Fig.3 The experimental waveforms measured at a full load of 500 W.

CONCLUSION

This paper has presented the theoretical analysis of steady-state and experimental results for the proposed converter, which successfully demonstrates its performance. A prototype isolated converter has been successfully implemented with a high step-up ratio and high efficiency for sustainable energy applications. The presented circuit topology inherently makes the input current continuous and smooth, which decreases the conduction losses, lengthens the life time of the input source, and constrains conducted EMI problems. In addition, the lossless passive clamp function recycles the leakage energy and constrains/lowers the voltage spikes across the power switches. Meanwhile, the voltage stress on the power switch is restricted and is much lower than the output voltage Vo, which is 380 V. Furthermore, the full-load efficiency is 90.67% at Po =500 W, and the maximum efficiency is 94.71% at Po = 200 W. Thus, the proposed converter is suitable for renewable-energy applications that need high step-up conversion and have electrical-isolation requirements.

 REFERENCES

  1. Kefalas, and A. Kladas, “Analysis of transformers working under heavily saturated conditions in grid-connected renewable energy systems,” IEEE Trans. Ind. Electron., vol. 59, no. 5, pp. 2342–2350, May 2012

2. Jonghoon Kim, Jaemoon Lee, and B. H. Cho, “Equivalent circuit modeling of pem fuel cell degradation combined with a lfRC,” IEEE Trans. Ind. Electron., vol. 60, no. 11, pp. 5086–5094, Nov. 2013.

3. Prasanna U R, and Akshay K. Rathore, “Extended range zvs active-clamped current-fed full-bridge isolated dc/dc converter for fuel cell applications: analysis, design, and experimental results,” IEEE Trans. Ind. Electron., vol. 60, no. 7, pp. 2661–2672, July 2013.

4. Shih-Jen Cheng, Yu-Kang Lo, Huang-Jen Chiu, and Shu-Wei Kuo, “High-efficiency digital-controlled interleaved power converter for high-power pem fuel-cell applications,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 773–780, Feb. 2013.

5. Changzheng Zhang, Shaowu Du, and Qiaofu Chen, “A novel scheme suitable for high-voltage and large-capacity photovoltaic power stations,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3775–3783, Sept. 2013.