A Unified Nonlinear Controller Design for On-grid/Off-grid Wind Energy Battery-Storage System

ABSTRACT:

The objective of this paper is to explore the utilization of nonlinear control strategy to a multi-input multi yield (MIMO) nonlinear model of a breeze vitality battery stockpiling framework utilizing a changeless magnet synchronous generator (PMSG). The test is that the framework ought to work in both matrix associated and independent modes while guaranteeing a consistent progress between the two modes and an effective power circulation between the heap, the battery and the network. Our methodology is unique in relation to the regular techniques found in writing, which utilize an alternate controller for every one of the modes. Rather, in this work, a solitary bound unified nonlinear controller is proposed. The proposed unified nonlinear control framework is assessed in recreation. The outcomes demonstrated that the proposed control conspire gives high unique reactions because of network control blackout and load variety just as zero relentless state mistake.

 

BLOCK DIAGRAM:

 

Fig. 1. WECS based permanent magnet synchronous generator.

 EXPECTED SIMULATION RESULTS:

Fig. 2. Optimum Rotor Speed and Output Power.

Fig. 3. Voltage and current of the load.

Fig. 4. dc-link voltage.

Fig. 5. Wind Turbine Output Power (MW).

Fig. 6. Load Power (MW).

Fig. 7. Charge/discharge of Battery (%).

Fig. 8. Grid Power (MW).

CONCLUSION:

This paper has proposed a nonlinear MIMO controller dependent on the criticism linearization hypothesis to direct the heap voltage in both matrix associated and remain solitary mode while guaranteeing a consistent change between the two modes and an effective power dispersion between the heap, the battery and the network. Our methodology is not quite the same as the regular strategies found in writing, which utilize an alternate controller, PID based, for every method of activity. Rather, in this work, a solitary bound together nonlinear controller is proposed. The execution of the proposed controller has been tried with various breeze speeds just as in the two methods of activity with dynamic load. The recreation results demonstrate that applying nonlinear input linearization based control procedure gives a decent control execution. This execution is portrayed by quick and smooth transient reaction just as great consistent state soundness and reference following quality, even with variable breeze speed and dynamic load activity. Be that as it may, this examination expect that the framework parameters are settled. A future work will be to test the framework when parameters are obscure utilizing versatile control structure hypothesis.

Leave a Reply

Your email address will not be published. Required fields are marked *