Single Phase Bidirectional H6 Rectifier/Inverter

ABSTRACT:

Transformer-less photovoltaic (PV) inverters are more widely adopted due to high efficiency, low cost and light weight, etc. However, H5, HERIC, etc. transformer-less PV inverters do not have the bidirectional capability for solar energy storage system in the future. With topology derivation history reviewed from rectifier to inverter, the essence of bidirectional rectifier/inverter is revealed to find a reverse power flow approach. Therefore, this paper proposes an advanced bidirectional technique for a selected H6 inverter topology with only modulation strategy modified, while the others remain the same. For the H6 circuitry in both rectifier and inverter modes, excellent three level DM voltage feature is achieved, while leakage current issue is eliminated at the same time with improved modulation method. Simulations and experimental results verify the proposed single phase bidirectional H6 rectifier/inverter technique.

For Simulation Results Contact us @ 9347143789.

 

Investigations On Shunt Active Power Filter In A PV-Wind-FC Based Hybrid Renewable Energy System To Improve Power Quality Using Hardware-In-The loop Testing Platform

ABSTRACT:

The current power distribution system involves usage of nonlinear loads that cause power quality problems.Further, the penetration of renewable energy sources is increasing in the power networks to satisfy the consistently rising energy demand, which changes the traditional network plan and control drastically. This paper presents an intelligently controlled hybrid energy system (HES) integrated with shunt active power filter (SAPF) to address the power quality problems. Renewable sources like-Wind, PV and fuel cell (FC) are integrated into HES and are regulated using artificial intelligence techniques that are also implemented for maximum power point tracking (MPPT) in both PV and wind energy systems. The dynamic performance of SAPF is optimized using fuzzy logic, neural network and adaptive neuro-fuzzy inference system (ANFIS) based control algorithms. These controllers provide the smooth DC-link voltage and minimize the total harmonic distortion (THD) produced by the balanced/unbalanced and nonlinear loads. Comparison of these reveal that the ANFIS based algorithm provides minimum THD. The system is tested in real-time using hardware-in-the-loop (HIL) setup. The control schemes are executed on FPGA based OPAL-RT4510computational engine with microsecond step.

For Simulation Results Contact us @ 9347143789.

Design and Control of Wind integrated Shunt Active Power Filter to Improve Power Quality

ABSTRACT:

In this paper wind energy conservation system (WECS) with shunt active power filter (SAPF) is proposed for harmonics elimination, power factor correction, reactive power compensation and grid current balancing. Adaptive neuro  fuzzy inference system (ANFIS) based controller is implemented at WECS side to control the boost converter to achieve MPP and at SAPF sides to minimize voltage variations and enhance power quality. Here, synchronous reference frame (SRF) theory based reference current generation technique is employed in SAPF. The proposed scheme is implemented in MATLAB/Simulink. The results confirm that this method has better performance and can maintain total harmonic distortion (THD) level of the system within the IEEE standard 519.

For Simulation Results Contact us @9347143789.

 

A Systematic Method for Designing a PR Controller and Active Damping of the LCL Filter for Single-Phase Grid-Connected PV Inverters

ABSTRACT:

The Proportional Resonant (PR) current controller provides gains at a certain frequency (resonant frequency) and eliminates steady state errors. Therefore, the PR controller can be successfully applied to single grid-connected PV inverter current control. On the contrary, a PI controller has steady-state errors and limited disturbance rejection capability. Compared with the L- and LC filters, the LCL filter has excellent harmonic suppression capability, but the inherent resonant peak of the LCL filter may introduce instability in the whole system. Therefore, damping must be introduced to improve the control of the system. Considering the controller and the LCL filter active damping as a whole system makes the controller design method more complex. In fact, their frequency responses may affect each other. The traditional trial-and-error procedure is too time-consuming and the design process is inefficient. This paper provides a detailed analysis of the frequency response influence between the PR controller and the LCL filter regarded as a whole system. In addition, the paper presents a systematic method for designing controller parameters and the capacitor current feedback coefficient factor of LCL filter active-damping. The new method relies on meeting the stable margins of the system. Moreover, the paper also clarifies the impact of the grid on the inverter output current. Numerical simulation and a 3 kW laboratory setup assessed the feasibility and effectiveness of the proposed method.

For Simulation Results contact us @ 9347143789

 

Indirect field-oriented control of induction motor drive based on adaptive fuzzy logic controller

ABSTRACT:

Recently, Asynchronous Motors are extensively used as workhorse in a multitude of industrial and high performance applications. Induction Motors (IM) have wide applications in today’s industry because of their robustness and low maintenance. A smart and fast speed control system, however, is in most cases a prerequisite for most applications. This work presents a smart control system for IM using an Adaptive Fuzzy Logic Controller (AFLC) based on the Levenberg–Marquardt algorithm. A synchronously rotating reference frame is used to model IM. To achieve maximum efficiency and torque of the IM, speed control was found to be one of the most challenging issues. Indirect Field-Oriented Control (IFOC) or Indirect Vector Control techniques with robust AFLC offer remarkable speed control with high dynamic response. Computer simulation results using MATLAB/Simulink® Toolbox are described and examined in this study for conventional PI and AFLC. AFLC presents robustness as regards overshoot, undershoot, rise time, fall time, and transient oscillation for speed  variation of IFOC IM drive in comparison with classical PI. Moreover, load disturbance rejection capability for the designed control scheme is also verified with the AFL controller.

For Simulation Results Contact us @ 9347143789.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9

Indirect field-oriented control of induction motor drive based on adaptive fuzzy logic controller

ABSTRACT:  

Recently, Asynchronous Motors are extensively used as workhorse in a multitude of industrial and high performance applications. Induction Motors (IM) have wide applications in today’s industry because of their robustness and low maintenance. A smart and fast speed control system, however, is in most cases a prerequisite for most applications. This work presents a smart control system for IM using an Adaptive Fuzzy Logic Controller (AFLC) based on the Levenberg–Marquardt algorithm. A synchronously rotating reference frame is used to model IM. To achieve maximum efficiency and torque of the IM, speed control was found to be one of the most challenging issues. Indirect Field-Oriented Control (IFOC) or Indirect Vector Control techniques with robust AFLC offer remarkable speed control with high dynamic response. Computer simulation results using MATLAB/Simulink® Toolbox are described and examined in this study for conventional PI and AFLC. AFLC presents robustness as regards overshoot, undershoot, rise time, fall time, and transient oscillation for speed  variation of IFOC IM drive in comparison with classical PI. Moreover, load disturbance rejection capability for the designed control scheme is also verified with the AFL controller.

Maximum power extraction from wind energy system based on fuzzy logic Control

ABSTRACT:

This paper proposes a variable speed control scheme for grid-connected wind energy conversion system (WECS) using permanent magnet synchronous generator (PMSG). The control algorithm tracks the maximum power for wind speeds below rated speed of wind turbines and ensures the power will not go over the rated power for wind speeds over the rated value. The control algorithm employs fuzzy logic controller (FLC) to effectively do this target. The wind turbine is connected to the grid via back-to-back PWM-VSC. Two effective computer simulation packages (PSIM and Simulink) are used to carry out the simulation effectively. The control system has two controllers for generator side and grid side converters. The main function of the generator side controller is to track the maximum power through controlling the rotational speed of the wind turbine using FLC. In the grid side converter, active and reactive power control has been achieved by controlling q-axis and d-axis current components, respectively. The d-axis current is set at zero for unity power factor and the q-axis current is controlled to deliver the power flowing from the dc-link to the electric utility grid.

For Simulation Results Contact us @ 9347143789.

Fuzzy logic control for a wind/battery renewable energy production system

ABSTRACT:

In this study, a designed proportional-integral (PI) controller and a fuzzy logic controller (FLC) that fix  the voltage amplitude to a constant value of 380 V and 50 Hz for loads supplied from a wind/battery hybrid energy system are explained and compared. The quality of the power produced by the wind turbine is affected by the continuous and unpredictable variations of the wind speed. Therefore, voltage-stabilizing controllers must be integrated into the system in order to keep the voltage magnitude and frequency constant at the load terminals, which requires constant voltage and frequency. A fuzzy logic-based controller to be used for the voltage control of the designed hybrid system is proposed and compared with a classical PI controller for performance validation. The entire designed system is modeled and simulated using MATLAB/Simulink GUI (graphical user interface) with all of its subcomponents.

For Simulation Results Contact us @ 9347143789.

A variable speed wind generator maximum power tracking based on adaptative neuro-fuzzy inference system

ABSTRACT:

The power from wind varies depending on the environmental factors. Many methods have been proposed to locate and track the maximum power point (MPPT) of the wind, such as the fuzzy logic (FL), artificial neural network (ANN) and neuro-fuzzy. In this paper, a variable-speed wind-generator maximum power- point-tracking (MPPT) based on adaptative neuro-fuzzy inference system (ANFIS) is presented. It is designed as a combination of the Sugeno fuzzy model and neural network. The ANFIS model is used to predict the optimal speed rotation using the variation of the wind speed as the input. The wind energy conversion system (WECS) employing a permanent magnet synchronous generator connected to a DC bus using a power converter is presented. A wind speed step model was used in the design phase. The performance of the WECS with the proposed ANFIS controller is tested for fast wind speed variation. Simulation results showed the possibility of achieving maximum power tracking for the wind and output voltage regulation for the DC bus simultaneously with the ANFIS controller. The results also proved the good response and robustness of the control system proposed.

For Simulation Results Contact us @ 9347143789.

Robust Repetitive Control Design for 3P4W Shunt Active Power Filter

ABSTRACT:

This paper presents a discrete repetitive control technique for three phase four wire (3P4W) shunt active power filter (SAPF). Generally, the control design for power electronics devices involves two control loops: slow acting outer voltage loop and fast acting inner current control loop. The reference for inner current loop is periodic in nature and cannot be easily tracked by PI regulator. The repetitive controllers (RC) are well known for their tracking ability of periodic signals and offers high gain at all the frequencies. The high gain in higher frequency range may leads towards instability. Therefore, in proposed work, the regular RC is modified by squaring its sensitivity function. This approach results in low amplitude of sensitivity function while offering deep notches at low to mid frequencies range and smaller notches at higher frequencies. This control approach has been simulated and implemented on 3P4W SAPF.

For simulation Results Contact  us @ 9347143789.