Solar PV Array Fed Brushless DC Motor Driven Water Pump

 

ABSTRACT:

 This work deals with the utilization of solar photovoltaic (SPV) energy in the brushless DC (BLDC) motor driven water pump. A DC-DC boost converter, used as an intermediate power conditioning unit plays a vital role in efficiency enhancement of SPV array and soft starting of the BLDC motor with proper control. The speed control of BLDC motor is performed by PWM (Pulse Width Modulation) control of the voltage source inverter (VSI) using DC link voltage regulator. No additional control or current sensing element is required for speed control. The behavior of proposed pumping system is demonstrated by evaluating its various performances through MATLAB/simulink based simulation study.

KEYWORDS:

  1. Solar PV
  2. BLDC motor
  3. Boost converter
  4. Soft starting
  5. PWM
  6. VSI
  7. Speed control

 SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:

Fig.1 Configuration of PV array fed BLDC motor-pump.

 EXPECTED SIMULATION RESULTS:

 

Fig.2 Starting and steady state performances of solar PV array

Fig.3 Starting and steady state performance of boost DC-DC converter

Fig.4 Starting and steady state performance of brushless DC motor-pump

Fig.5 Dynamic performance of solar PV array.

Fig.6 Dynamic performance of boost DC-DC converter

Fig.7 Dynamic performance of brushless DC motor – pump

CONCLUSION:

The SPV Array fed boost converter based BLDC motor driven water pump has been proposed and its suitability has been demonstrated by analyzing its various performance indices using MATLAB based simulation study. A simple, efficient and economical method for speed control of BLDC motor has been suggested, which has offered absolute elimination of current sensing elements. The proper selection of SPV array has made the boost converter capable of tracking MPP irrespective of weather conditions. An optimum design of the boost converter has been presented. The safe starting of brushless DC motor has been achieved without any additional control. The desired performance of proposed system even at 20% of standard solar irradiance has justified its suitability for solar PV based water pumping.

REFERENCES:

[1] R. Kumar and B. Singh, “Solar PV array fed Cuk converter-VSI controlled BLDC motor drive for water pumping,” 6th IEEE Power India Int. Conf. (PIICON), 5-7 Dec. 2014, pp. 1-7.

[2] M. A. Elgendy, B. Zahawi and D. J. Atkinson, “Assessment of the Incremental Conductance Maximum Power Point Tracking Algorithm,” IEEE Trans. Sustain. Energy, vol.4, no.1, pp.108-117, Jan. 2013.

[3] J.V. Mapurunga Caracas, G. De Carvalho Farias, L.F. Moreira Teixeira and L.A. De Souza Ribeiro, “Implementation of a High-Efficiency, High-Lifetime, and Low-Cost Converter for an Autonomous Photovoltaic Water Pumping System,” IEEE Trans. Ind. Appl., vol. 50, no. 1, pp. 631-641, Jan.-Feb. 2014.

[4] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: Converters, Applications and Design, 3rd ed. New Delhi, India: John Wiley & Sons Inc., 2010.

[5] M. H. Rashid, Power Electronics Handbook: Devices, Circuits, and Applications,” 3rd ed. Oxford, UK: Elsevier Inc., 2011.

 

Commutation Torque Ripple Reduction in BLDC Motor Using Modified SEPIC Converter and Three-level NPC Inverter

ABSTRACT:

 This paper presents a new power converter topology to suppress the torque ripple due to the phase current commutation of a brushless DC motor (BLDCM) drive system. A combination of a 3-level diode clamped multilevel inverter (3-level DCMLI), a modified single-ended primary-inductor converter (SEPIC), and a dc-bus voltage selector circuit are employed in the proposed torque ripple suppression circuit. For efficient suppression of torque pulsation, the dc-bus voltage selector circuit is used to apply the regulated dc-bus voltage from the modified SEPIC converter during the commutation interval. In order to further mitigate the torque ripple pulsation, the 3-level DCMLI is used in the proposed circuit. Finally, simulation and experimental results show that the proposed topology is an attractive option to reduce the commutation torque ripple significantly at low and high speed applications.

KEYWORDS:

  1. Brushless direct current motor (BLDCM)
  2. Dc-bus voltage control
  3. Modified single-ended primary-inductor converter
  4. 3-level diode clamped multilevel inverter (3-level DCMLI)
  5. Torque ripple

SOFTWARE: MATLAB/SIMULINK

CIRCUIT DIAGRAM:

Fig. 1. Proposed converter topology with a dc-bus voltage selector circuit for BLDCM

 EXPECTED SIMULATION RESULTS:

Fig. 2. Simulated waveforms of phase current and torque at 1000 rpm and 0.825 Nm with 5 kHz switching frequency. (a) BLDCM fed by 2-level inverter. (b) BLDCM fed by 3-level DCMLI. (c) BLDCM fed by 2-level inverter with SEPIC converter and a switch selection circuit. (d) BLDCM fed by proposed topology.

Fig. 3. Simulated waveforms of phase current and torque at 6000 rpm and 0.825 Nm with 5 kHz switching frequency. (a) BLDCM fed by 2-level inverter. (b) BLDCM fed by 3-level DCMLI. (c) BLDCM fed by 2-level inverter with SEPIC converter and a switch selection circuit. (d) BLDCM fed by proposed topology.

Fig. 4. Simulated waveforms of phase current and torque at 1000 rpm and 0.825 Nm with 20 kHz switching frequency. (a) BLDCM fed by 2-level inverter. (b) BLDCM fed by 3-level DCMLI. (c) BLDCM fed by 2-level inverter with SEPIC converter and switch a selection circuit. (d) BLDCM fed by proposed topology.

Fig. 5. Simulated waveforms of phase current and torque at 6000 rpm and 0.825 Nm with 20 kHz switching frequency. (a) BLDCM fed by 2-level inverter. (b) BLDCM fed by 3-level DCMLI. (c) BLDCM fed by 2-level inverter with SEPIC converter and a switch selection circuit. (d) BLDCM fed by proposed topology.

Fig. 6. Simulated waveforms of phase current and torque at 1000 rpm and 0.825 Nm with 80 kHz switching frequency. (a) BLDCM fed by 2-level inverter. (b) BLDCM fed by 3-level DCMLI. (c) BLDCM fed by 2-level inverter with SEPIC converter and a switch selection circuit. (d) BLDCM fed by proposed topology.

Fig. 7. Simulated waveforms of phase current and torque at 6000 rpm and 0.825 Nm with 80 kHz switching frequency. (a) BLDCM fed by 2-level inverter. (b) BLDCM fed by 3-level DCMLI. (c) BLDCM fed by 2-level inverter with SEPIC converter and a switch selection circuit. (d) BLDCM fed by proposed topology.

CONCLUSION:

In this paper, a commutation torque ripple reduction circuit has been proposed using 3-level DCMLI with modified SEPIC converter and a dc-bus voltage selector circuit. A laboratory-built drive system has been tested to verify the proposed converter topology. The suggested dc-bus voltage control strategy is more effective in torque ripple reduction in the commutation interval. The proposed topology accomplishes the successful reduction of torque ripple in the commutation period and experimental results are presented to compare the performance of the proposed control technique with the conventional 2-level inverter, 3-level DCMLI, 2-level inverter with SEPIC converter and the switch selection circuit-fed BLDCM. In order to obtain significant torque ripple suppression, quietness and higher efficiency, 3-level DCMLI with modified SEPIC converter and the voltage selector circuit is a most suitable choice to obtain high-performance operation of BLDCM. The proposed topology may be used for the torque ripple suppression of BLDCM with the very low stator winding inductance.

REFERENCES:

[1] N. Milivojevic, M. Krishnamurthy, Y. Gurkaynak, A. Sathyan, Y.-J. Lee, and A. Emadi, “Stability analysis of FPGA-based control of brushless DC motors and generators using digital PWM technique,” IEEE Trans. Ind. Electron., vol. 59, no. 1, pp. 343–351, Jan. 2012.

[2] X. Huang, A. Goodman, C. Gerada, Y. Fang, and Q. Lu, “A single sided matrix converter drive for a brushless dc motor in aerospace applications,” IEEE Trans. Ind. Electron., vol. 59, no. 9, pp. 3542–3552, Sep. 2012.

[3] X. Huang, A. Goodman, C. Gerada, Y. Fang, and Q. Lu, “Design of a five-phase brushless DC motor for a safety critical aerospace application,” IEEE Trans. Ind. Electron., vol. 59, no. 9, pp. 3532-3541, Sep. 2012.

[4] J.-G. Lee, C.-S. Park, J.-J. Lee, G. H. Lee, H.-I. Cho, and J.-P. Hong, “Characteristic analysis of brushless motor condering drive type,” KIEE, pp. 589-591, Jul. 2002.

[5] T. H. Kim and M. Ehsani, “Sensorless control of BLDC motors from near-zero to high speeds,” IEEE Trans. Power Electron., vol. 19, no. 6, pp. 1635–1645, Nov. 2004.