A Novel Control Method for Transformerless H-Bridge Cascaded STATCOM with Star Configuration


This paper presents a transformerless static synchronous compensator (STATCOM) system based on multilevel H-bridge converter with star configuration. This proposed control methods devote themselves not only to the current loop control but also to the dc capacitor voltage control. With regards to the current loop control, a nonlinear controller based on the passivity-based control (PBC) theory is used in this cascaded structure STATCOM for the first time. As to the dc capacitor voltage control, overall voltage control is realized by adopting a proportional resonant controller. Clustered balancing control is obtained by using an active disturbances rejection controller. Individual balancing control is achieved by shifting the modulation wave vertically which can be easily implemented in a field-programmable gate array. Two actual H-bridge cascaded STATCOMs rated at 10 kV 2 MVA are constructed and a series of verification tests are executed. The experimental results prove that H-bridge cascaded STATCOM with the proposed control methods has excellent dynamic performance and strong robustness. The dc capacitor voltage can be maintained at the given value effectively.



Active disturbances rejection controller (ADRC), H-bridge cascaded, passivity-based control (PBC), proportional resonant (PR) controller, shifting modulation wave, static synchronous compensator (STATCOM).






Fig. 1. Control block diagram for the 10 kV 2 MVA H-bridge cascaded STATCOM.


Fig. 2. Block diagram of PBC.



image003 image004

Fig. 3. Experimental results verify the effect of PBC in steady-state process. (a) Ch1: reactive current; Ch2: compensating current; Ch3: residual current of grid. (b) Ch1: reactive current; Ch2: compensating current; Ch3: residual current of grid.


Fig. 4. Experimental results show the dynamic performance of STATCOM in the dynamic process. Ch1: reactive current; Ch2: compensating current; Ch3: residual current of grid.

image006 image007

Fig. 5. Experimental results in the startup process and stopping process. (a) Ch1: reactive current; Ch2: compensating current; Ch3: residual current of grid. (b) Ch1: reactive current; Ch2: compensating current; Ch3: residual current of grid.



This paper has analyzed the fundamentals of STATCOM based on multilevel H-bridge converter with star configuration. And then, the actual H-bridge cascaded STATCOM rated at 10 kV 2 MVA is constructed and the novel control methods are also proposed in detail. The proposed method has the following characteristics.

1) A PBC theory-based nonlinear controller is first used in STATCOM with this cascaded structure for the current loop control, and the viability is verified by the experimental results.

2) The PR controller is designed for overall voltage control and the experimental result proves that it has better performance in terms of response time and damping profile compared with the PI controller.

3) The ADRC is first used in H-bridge cascaded STATCOM for clustered balancing control and the experimental results verify that it can realize excellent dynamic compensation for the outside disturbance.

4) The individual balancing control method which is realized by shifting the modulation wave vertically can be easily implemented in the FPGA.

The experimental results have confirmed that the proposed methods are feasible and effective. In addition, the findings of this study can be extended to the control of any multilevel voltage source converter, especially those with H-bridge cascaded structure.



[1] B. Gultekin and M. Ermis, “Cascaded multilevel converter-based transmission STATCOM: System design methodology and development of a 12 kV ±12 MVAr power stage,” IEEE Trans. Power Electron., vol. 28, no. 11, pp. 4930–4950, Nov. 2013.

[2] B. Gultekin, C. O. Gerc¸ek, T. Atalik, M. Deniz, N. Bic¸er, M. Ermis, K. Kose, C. Ermis, E. Koc¸, I. C¸ adirci, A. Ac¸ik, Y. Akkaya, H. Toygar, and S. Bideci, “Design and implementation of a 154-kV±50-Mvar transmission STATCOM based on 21-level cascaded multilevel converter,” IEEE Trans. Ind. Appl., vol. 48, no. 3, pp. 1030–1045, May/Jun. 2012.

[3] S. Kouro, M. Malinowski, K. Gopakumar, L. G. Franquelo, J. Pou, J. Rodriguez, B.Wu,M. A. Perez, and J. I. Leon, “Recent advances and industrial applications of multilevel converters,” IEEE Trans. Ind. Electron., vol. 57, no. 8, pp. 2553–2580, Aug. 2010.

[4] F. Z. Peng, J.-S. Lai, J. W. McKeever, and J. VanCoevering, “A multilevel voltage-source inverter with separateDCsources for static var generation,” IEEE Trans. Ind. Appl., vol. 32, no. 5, pp. 1130–1138, Sep./Oct. 1996.

[5] Y. S. Lai and F. S. Shyu, “Topology for hybrid multilevel inverter,” Proc. Inst. Elect. Eng.—Elect. Power Appl., vol. 149, no. 6, pp. 449–458, Nov. 2002.

Final year academic projects


  1. A High Gain Input-Parallel Output-Series DC/DC Converter with Dual Coupled Inductors
  2. A High Step-Up Converter with Voltage-Multiplier Modules for Sustainable Energy Applications
  3. A High Step-Up DC to DC Converter Under Alternating Phase Shift Control for Fuel Cell Power System
  4. High-Efficiency MOSFET Transformer-less Inverter for Non-isolated Micro-inverter Applications
  5. A Multi-Input Bridgeless Resonant AC-DC Converter for Electromagnetic Energy Harvesting
  6. A Novel Control Method for Transformer-less H-Bridge Cascaded STATCOM with Star Configuration
  7. A Novel High Step-up DC/DC Converter Based on Integrating Coupled Inductor and Switched-Capacitor Techniques for Renewable Energy Applications


  1. A Modified Three-Phase Four-Wire UPQC Topology With Reduced DC-Link Voltage Rating
  1. FPGA-Based Predictive Sliding Mode Controller of a Three-Phase Inverter
  2. Pulsewidth Modulation of Z-Source Inverters With Minimum Inductor Current Ripple
  3. Improving the Dynamics of Virtual-Flux-Based Control of Three-Phase Active Rectifiers
  4. Sensorless Induction Motor Drive Using Indirect Vector Controller and Sliding-Mode Observer for Electric Vehicles
  5. Back-Propagation Control Algorithm for Power Quality Improvement Using DSTATCOM
  6. A Zero-Voltage Switching Three-Phase Inverter
  7. Control of Reduced-Rating Dynamic Voltage Restorer With a Battery Energy Storage System
  8. A Combination of Shunt Hybrid Power Filter and Thyristor-Controlled Reactor for Power Quality
  9. A Transformerless Grid-Connected Photovoltaic System Based on the Coupled Inductor Single-Stage Boost Three-Phase Inverter
  10. LCL Filter Design and Performance Analysis for Grid-Interconnected Systems
  11. An Inductively Active Filtering Method for Power-Quality Improvement of Distribution Networks With Nonlinear Loads
  12. A Bidirectional-Switch-Based Wide-Input Range High-Efficiency Isolated Resonant Converter for Photovoltaic Applications
  13. Analysis and Implementation of an Improved Flyback Inverter for Photovoltaic AC Module Applications
  14. Speed Sensorless Vector Controlled Induction Motor Drive Using Single Current Sensor
  15. A Novel Design and Optimization Method of an LCL Filter for a Shunt Active Power Filter
  16. An Active Harmonic Filter Based on One-Cycle Control
  17. A Nine-Level Grid-Connected Converter Topology for Single-Phase Transformerless PV Systems
  18. Modeling and Design of Voltage Support Control Schemes for Three-Phase Inverters Operating Under Unbalanced Grid Conditions
  19. Cascaded Two-Level Inverter-Based Multilevel STATCOM for High-Power Applications

An Integrated Hybrid Power Supply for Distributed Generation Applications Fed by Nonconventional Energy Sources


A new, hybrid integrated topology, fed by photovoltaic (PV) and fuel cell (FC) sources and suitable for distributed generation applications, is proposed. It works as an uninterruptible power source that is able to feed a certain minimum amount of power into the grid under all conditions. PV is used as the primary source of power operating near maximum power point (MPP), with the FC section (block), acting as a current source, feeding only the deficit power. The unique “integrated” approach obviates the need for dedicated communication between the two sources for coordination and eliminates the use of a separate, conventional dc/dc boost converter stage required for PV power processing, resulting in a reduction of the number of devices, components, and sensors. Presence of the FC source in parallel (with the PV source) improves the quality of power fed into the grid by minimizing the voltage dips in the PV output. Another desirable feature is that even a small amount of PV power (e.g., during low insolation), can be fed into the grid. On the other hand, excess power is diverted for auxiliary functions like electrolysis, resulting in an optimal use of the energy sources. The other advantages of the proposed system include low cost, compact structure, and high reliability, which render the system suitable for modular assemblies and “plug-n-play” type applications. All the analytical, simulation results of this research are presented.


INDEX TERMS: Buck-boost, distributed generation, fuel cell, grid-connected, hybrid, maximum power point tracking (MPPT), photovoltaic.





image001   Fig. 1. Various HDGS configurations. (a) Conventional, multistage topology using two H-bridge inverters [4], [6]. (b) Modified topology with only one H-bridge inverter [4]. (c) Proposed topology. λ denotes solar insolation (Suns).




Fig. 2. Simulation results of the integrated hybrid configuration showing transition from mode III to mode II and then to mode I. T1 and T2 denote the transition between mode III to mode II and mode II to mode I respectively.


Fig. 3. Simulation results of the integrated hybrid configuration operating in electrolysis mode (mode I to mode III and then to mode I). T1 and T2 denote the transition between mode I to mode III and mode III to mode I respectively.


Fig.4. Performance comparison of the proposed HDGS system with and without an FC source in parallel with the PV source.



A compact topology, suitable for grid-connected applications has been proposed. Its working principle, analysis, and design procedure have been presented. The topology is fed by a hybrid combination of PV and FC sources. PV is the main source, while FC serves as an auxiliary source to compensate for the uncertainties of the PV source. The presence of FC source improves the quality of power (grid current THD, grid voltage profile, etc.) fed into the grid and decreases the time taken to reach theMPP. Table IV compares the system performance with and without the FC block in the system. A good feature of the proposed configuration is that the PV source is directly coupled with the inverter (and not through a dedicated dc–dc converter) and the FC block acts as a current source. Considering that the FC is not a stiff dc source, this facilitates PV operation at MPP over a wide range of solar insolation, leading to an optimal utilization of the energy sources. The efficiency of the proposed system in mode-1 is higher (around 85% to 90%) than mode 2 and 3 (around 80% to 85%).



[1] J. Kabouris and G. C. Contaxis, “Optimum expansion planning of an unconventional generation system operating in parallel with a large scale network,” IEEE Trans. Energy Convers., vol. 6, no. 3, pp. 394–400, Sep. 1991.

[2] P. Chiradeja and R. Ramakumar, “An approach to quantify the technical benefits of distributed generation,” IEEE Trans. Energy Convers., vol. 19, no. 4, pp. 764–773, Dec. 2004.

[3] Y. H. Kim and S. S. Kim, “An electrical modeling and fuzzy logic control of a fuel cell generation system,” IEEE Trans. Energy Convers., vol. 14, no. 2, pp. 239–244, Jun. 1999.

[4] K. N. Reddy and V. Agarwal, “Utility interactive hybrid distributed generation scheme with compensation feature,” IEEE Trans. Energy Convers., vol. 22, no. 3, pp. 666–673, Sep. 2007.

[5] K. S. Tam and S. Rahman, “System performance improvement provided by a power conditioning subsystem for central station photovoltaic fuel cell power plant,” IEEE Trans. Energy Convers., vol. 3, no. 1, pp. 64–70.