A High Step-Up DC to DC Converter Under Alternating Phase Shift Control for Fuel Cell Power System

ABSTRACT

This paper researches a novel pulse width modulation (PWM) conspire for two-stage interleaved support converter with voltage multiplier for energy component control framework by consolidating substituting stage move (APS) control and conventional interleaving PWM control. The APS control is utilized to lessen the voltage weight on switches in light load while the customary interleaving control is utilized to keep better execution in substantial load. The limit condition for swapping among APS and conventional interleaving PWM control is inferred. In light of the previously mentioned examination, a full power run control joining APS and conventional interleaving control is proposed. Misfortune breakdown examination is likewise given to investigate the productivity of the converter. At long last, it is confirmed by test results.

BLOCK DIAGRAM:

image001

Fig. 1. Grid-connected power system based on fuel cell.

image002

Fig. 2. Main theoretical waveforms at boundary condition.

EXPERIMENTAL RESULTS:

 image003image004 image005 image006Fig.3 Experimental results at boundary condition with traditional interleaving control (L = 1158 μH, R = 2023 Ω, and D = 0.448). (a) CH1-S1 Driver Voltage, CH2 L1 Current, CH3-S1 Voltage Stress, CH4-Output Voltage, (b) CH1-S1 Driver Voltage, CH2 C1 Current, CH3-S1 Voltage Stress, CH4-OutputVoltage, (c) CH1-S1 DriverVoltage,CH2 D1 Current,CH3-S1 Voltage Stress, CH4-Output Voltage, (d) CH1-S1 Driver Voltage, CH2 DM1 Current, CH3-S1 Voltage Stress, CH4-Output Voltage.

image007

Fig. 4. Traditional interleaving control at nominal load (L = 1158 μH and R = 478 Ω).]

image008

Fig. 5. Traditional interleaving control in Zone A (L = 1158 μH and R = 1658 Ω).

CONCLUSION

The limit condition is determined after stage investigation in this paper. The limit condition arranges the working states into two zones, i.e., Zone An and Zone B. The conventional interleaving control is utilized in Zone A while APS control is utilized in Zone B. What’s more, the swapping capacity is accomplished by a rationale unit. With the proposed control plot, the converter can accomplish low voltage weight on switches in all power scope of the heap, which is confirmed by exploratory outcomes.

A High Step-Up Converter with Voltage-Multiplier Modules for Sustainable Energy Applications

ABSTRACT

This paper proposes a novel isolated high step-up converter for sustainable energy applications. Through an adjustable voltage-multiplier module, the proposed converter achieves a high step-up gain without utilizing either a large duty ratio or a high turns ratio. The voltage-multiplier modules are composed of coupled inductors and switched capacitors. Due to the passive lossless clamped performance, leakage energy is recycled, which alleviates a large voltage spike across the main switches and improves efficiency. Thus, power switches with low levels of voltage stress can be adopted for reducing conduction losses. In addition, the isolated topology of the proposed converter satisfies electrical-isolation and safety regulations. The proposed converter also possesses continuous and smooth input current, which decreases the conduction losses, lengthens life time of the input source, and constrains conducted electromagnetic-interference problems. Finally, a prototype circuit with 40 V input voltage, 380 V output, and 500 W maximum output power is operated to verify its performance. The maximum efficiency is 94.71 % at 200 W, and the full-load efficiency is 90.67 % at 500 W.

 KEYWORDS

  1. High Step-Up
  2. Voltage-Multiplier Module
  3. Isolated Converter

SOFTWARE: MATLAB/SIMULINK

BLOCK DIAGRAM:

image001

Fig. 1. Block diagram of a typically sustainable energy system.

CIRCUIT DIAGRAM:

image002

Fig. 2. Proposed isolated high step-up converter for sustainable e
nergy applications.

EXPERIMENTAL RESULTS:

image003

(a) Measured waveforms of vDS1, vDS2, iLin and iLk

image004

(b) Measured waveforms of vDc, vDr and iDr

image005

(C)Measured waveforms of vDf1, vDf2, iDf1 and iDf2

image006

(d) Measured waveforms of vDo, iDo and Vo

Fig.3 The experimental waveforms measured at a full load of 500 W.

CONCLUSION

This paper has presented the theoretical analysis of steady-state and experimental results for the proposed converter, which successfully demonstrates its performance. A prototype isolated converter has been successfully implemented with a high step-up ratio and high efficiency for sustainable energy applications. The presented circuit topology inherently makes the input current continuous and smooth, which decreases the conduction losses, lengthens the life time of the input source, and constrains conducted EMI problems. In addition, the lossless passive clamp function recycles the leakage energy and constrains/lowers the voltage spikes across the power switches. Meanwhile, the voltage stress on the power switch is restricted and is much lower than the output voltage Vo, which is 380 V. Furthermore, the full-load efficiency is 90.67% at Po =500 W, and the maximum efficiency is 94.71% at Po = 200 W. Thus, the proposed converter is suitable for renewable-energy applications that need high step-up conversion and have electrical-isolation requirements.

 REFERENCES

  1. Kefalas, and A. Kladas, “Analysis of transformers working under heavily saturated conditions in grid-connected renewable energy systems,” IEEE Trans. Ind. Electron., vol. 59, no. 5, pp. 2342–2350, May 2012

2. Jonghoon Kim, Jaemoon Lee, and B. H. Cho, “Equivalent circuit modeling of pem fuel cell degradation combined with a lfRC,” IEEE Trans. Ind. Electron., vol. 60, no. 11, pp. 5086–5094, Nov. 2013.

3. Prasanna U R, and Akshay K. Rathore, “Extended range zvs active-clamped current-fed full-bridge isolated dc/dc converter for fuel cell applications: analysis, design, and experimental results,” IEEE Trans. Ind. Electron., vol. 60, no. 7, pp. 2661–2672, July 2013.

4. Shih-Jen Cheng, Yu-Kang Lo, Huang-Jen Chiu, and Shu-Wei Kuo, “High-efficiency digital-controlled interleaved power converter for high-power pem fuel-cell applications,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 773–780, Feb. 2013.

5. Changzheng Zhang, Shaowu Du, and Qiaofu Chen, “A novel scheme suitable for high-voltage and large-capacity photovoltaic power stations,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3775–3783, Sept. 2013.

 

A High Gain Input-Parallel Output-Series DC/DC Converter with Dual Coupled Inductors

ABSTRACT

A topology of arrangement dynamic power channel (SAP F) in view of a solitary stage half-connect fell staggered upset er is proposed so aside repay voltage music of the heap associated with the purpose of basic coupling (P CC). This paper displays the fundamental parts of the alter er and The proposed transform er with the basic control effectively acquires any voltage reference. Hence, the rearrange er goes about as a consonant source when the reference is a non-sinusoidal flag.

Windings

On the other hand, the proposed converter inherits the merits of interleaved series-connected output capacitors for high voltage gain, low output voltage ripple, and low switch voltage stress. Moreover, the secondary sides of two coupled inductors are connected in series to a regenerative capacitor by a diode for extending the voltage gain and balancing the primary-parallel currents. In addition, the active switches are turned on at zero current and the reverse recovery problem of diodes is alleviated by reasonable leakage inductances of the coupled inductors. Besides, the energy of leakage inductances can be recycled. A prototype circuit rated 500-W output power is implemented in the laboratory, and the experimental results shows satisfactory agreement with the theoretical analysis.

CIRCUIT DIAGRAM:

 image002

Fig. 1. Equivalent circuit of the presented converter.

image004

Fig.2 Key theoretical waveforms.

 EXPERIMENTAL VERIFICATIONS:

image006

Fig.3 Key experimental current waveforms.

image008

Fig.4 Voltage stress waveforms of power components.

CONCLUSION

For low info voltage and high advance up power transformation, this paper has effectively built up a high-voltage gain dc– dc converter by information parallel yield arrangement and inductor procedures. The key hypothetical waveforms, relentless state operational guideline, and the principle circuit execution are talked about to investigate the upsides of the proposed converter. Some critical attributes of the proposed converter are as per the following:

Converter

1) it can accomplish an a lot higher voltage gain and abstain from working at extraordinary obligation cycle and various turn proportions; 2) the voltage worries of the fundamental switches are low, which are one fourth of the yield voltage under N = 1; 3) the information current can be naturally shared by each stage and low swell flows are gotten at info;

Currents

  • 4) the fundamental switches can be turned ON at ZCS with the goal that the primary exchanging misfortunes are decreased; and 5) the current falling rates of the diodes are constrained by the spillage inductance so the diode invert recuperation issue is eased.

In the meantime, there is a principle detriment that the obligation cycle of each switch will be at the very least half under the interleaved control with 180◦ stage move.

 REFERENCES

[1] C.Cecati, F. Ciancetta, and P. Siano, “A multilevel inverter for photovoltaic systems with fuzzy logic control,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 4115–4125, Dec. 2010.

[2] X. H. Yu, C. Cecati, T. Dillon, and M. G. Simoes, “The new frontier of smart grid,” IEEE Trans. Ind. Electron. Mag., vol. 15, no. 3, pp. 49–63, Sep. 2011.

[3] G. Fontes, C. Turpin, S. Astier, and T. A. Meynard, “Interactions between fuel cell and power converters: Influence of current harmonics on a fuel cell stack,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 670–678, Mar. 2007.

[4] J. Y. Lee and S. N. Hwang, “Non-isolated high-gain boost converter using voltage-stacking cell,” Electron. Lett., vol. 44, no. 10, pp. 644–645, May 2008.

[5] Z. Amjadi and S. S. Williamson, “Power-electronics-based solutions for plug-in hybrid electric vehicle energy storage and management systems,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 608–616, Feb. 2010.